DEPARTMENT OF WATER AFFAIRS AND FORESTRY

CHIEF DIRECTORATE: RESOURCE DIRECTED MEASURES

CLASSIFICATION OF WATER RESOURCES AND DETERMINATION OF THE RESOURCE QUALITY OBJECTIVES IN THE LETABA CATCHMENT

ECOLOGICAL WATER REQUIREMENTS

Report Number: RDM/WMA02/00/CON/CLA/0313

DECEMBER 2013

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

REFERENCE

This report is to be referred to in bibliographies as:

Department of Water Affairs, South Africa, December 2013. Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment. Ecological Water Requirements. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. DWA Report, RDM/WMA02/00/CON/CLA/0313.

DOCUMENT INDEX

INDEX NUMBER	DWA REPORT NUMBER	REPORT TITLE
R 1	RDM/WMA02/00/CON/CLA/0112	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Inception report
R 2	RDM/WMA02/00/CON/CLA/0113	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Status quo assessment, IUA and biophysical node delineation and identification
R 7	RDM/WMA02/00/CON/CLA/0213	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Catchment visioning
R 3	RDM/WMA02/00/CON/CLA/0313	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Ecological Water Requirements
R 4	RDM/WMA02/00/CON/CLA/0413	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Consequences of Operational scenarios
R 5	RDM/WMA02/00/CON/CLA/0114	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Resource Quality Objectives
R 6	RDM/WMA02/00/CON/CLA/0214	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Main report
R 8	RDM/WMA02/00/CON/CLA/0314	Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment: Closing report

DEPARTMENT OF WATER AFFAIRS AND FORESTRY CHIEF DIRECTORATE: RESOURCE DIRECTED MEASURES

CLASSIFICATION OF WATER RESOURCES AND DETERMINATION OF THE RESOURCE QUALITY OBJECTIVES IN THE LETABA CATCHMENT

ECOLOGICAL WATER REQUIREMENTS: DRAFT Report Number: RDM/WMA02/00/CON/CLA/0313

Approved for Rivers for Africa by:

Delana Louw Project Manager Date

DEPARTMENT OF WATER AFFAIRS (DWA)

Approved for DWA by:

Chief Director: Water Ecosystems

..... Date

AUTHORS

The report was authored by:

Author	Company
Birkhead, Drew	Streamflow Solutions
Huggins, Greg	Nomad Consulting
Koekemoer, Shael	Koekemoer Aquatic Services
Louw, Delana	Rivers for Africa

Report Editor: Delana Louw and Shael Koekemoer

ACKNOWLEDGEMENTS

Comments were provided by:

REPORT SCHEDULE

Version	Date	Comments received on
First draft	December 2013	

EXECUTIVE SUMMARY

BACKGROUND

The Chief Directorate: Resource Directed Measures (CD: RDM) of the Department of Water Affairs (DWA) initiated a study during 2012 for the provision of professional services to undertake the implementation of the Water Resources Classification System (WRCS) and determination of the Resource Quality Objectives (RQOs) for significant water resources in the Letaba catchment. Rivers for Africa was appointed as the Professional Service Provider (PSP) to undertake this study (DWA, 2013a).

In summary, this task refers to integrated step 3: Quantify EWRs and changes in non-water quality ecosystem services. The main emphasis consists of the EcoClassification and Ecological Water Requirement (EWR) determination at various biophysical nodes in the system.

RESOURCE UNITS

Resource Units (RU) as determined during the 2006 comprehensive EWR study is accepted and tabled below:

RU	Rationale	Delineation
GROOT	LETABA RIVER	
RU A	The upper Letaba River catchment is highly afforested and the catchment above Ebenezer Dam, which includes the Dap Naude Dam, is small. There are three weirs between Ebenezer and Tzaneen Dam but due to the short length of this RU (30 km), and the many similar structures in the Groot Letaba River, these weirs were not considered important enough to subdivide this RU. The Tzaneen Dam due to its large size and being instream makes a logical end point to this RU.	Groot Letaba River from the source above Dap Naude Dam, to Ebenezer Dam and down to Tzaneen Dam.
RU B	This RU is divided at the upper section by the Tzaneen Dam and the lower end by the Prieska weir. The majority of this section of the Letaba River lies in one EcoRegion and one geomorphology zone. The EcoRegions are too small to warrant its own RU. The water quality in this section of the river is driven by the flow releases from Tzaneen Dam and the irrigation usage from the four weirs.	Groot Letaba River from the Tzaneen Dam to Prieska Weir.
RU C	This section of the river is approximately 40 km to the confluence with the Klein Letaba at the Kruger National Park (KNP) and consists of one weir namely the Nondweni weir. This section of the river system consists of complex operational rules and is driven by irrigation demands downstream as well as KNP releases. The majority of this section of the Letaba River lies in one EcoRegion and one geomorphology zone.	Groot Letaba from Prieska weir to the confluence with Klein Letaba River.
RU D	Approximately 95% of this RU lies in one geomorphological zone and there are four EcoRegions. The Habitat Integrity is the same for this whole area, and for reasons of practicality, only one RU was delineated. The water quality does not change in this section of the Letaba River as there are no major anthropogenic influences.	Groot Letaba River from the confluence with the Klein Letaba River to the confluence with the Olifants River.
KLEIN L	ETABA RIVER	
RU E	The Klein Letaba River has various geomorphological zones and two EcoRegions. The instream habitat integrity is the same for this whole area, and for reasons of practicality, only one RU was delineated for the Klein Letaba River. The water quality does not change in this section of the Klein Letaba River as there are no major anthropogenic influences. The Middle Letaba Dam is located on the Middle Letaba River about 7 km upstream of the confluence of the Middle and Klein Letaba rivers.	Head waters of the Klein Letaba to the confluence with the Groot Letaba River.
LETSITE	ELE RIVER	

Summary of the Resource Units delineated during the 2006 EWR study

RU	Rationale	Delineation
RU F	The Letsitele River has various geomorphological zones and two EcoRegions. The instream and riparian habitat integrity also has two regions. The water quality does change in the Letsitele from the upper catchment due to the dense settlements in the lower catchment. Only one RU was delineated for the Letsitele River.	Head waters, of the Letsitele down to the confluence with the Groot Letaba River.
MOLOTOT	SI RIVER	
RU G	The Molototsi River has various geomorphological zones and three EcoRegions. The instream and riparian habitat integrity also has only two regions. The water quality does change in the Molototsi River from the upper catchment to the confluence with the Groot Letaba River. The river is highly seasonal with long periods of no flow in the winter months. Only one RU was delineated for the Molototsi River.	Head waters, of the Molototsi down to the confluence with the Groot Letaba River.
THABINA	RIVER	
RU H	The Thabina River consists mainly of one EcoRegion, is a relative short river that is a tributary of the Letsitele River. The instream and riparian habitat integrity also has only two regions. The water quality is not expected to change below the Thabina Dam due to only seepage flow and spilling floodwaters is released from the dam. Only one RU was delineated for the Thabina River.	Upper of the Thabina River (or head waters – above the Thabina Dam) down to the confluence with the Letsitele River.

EWR SITES

Seven EWR sites as determined during the 2006 comprehensive EWR study is accepted and tabled below:

EWR Site	EW/D Site name	Divor	Co-orc	БЦ	
number	EWR Site name	River	Latitude	Longitude	RU
EWR 1	Appel	Groot Letaba	-23.91769	30.05083	Α
EWR 2	Letsitele Tank	Letsitele	-23.88806	30.36125	F
EWR 3	Hans Marensky	Groot Letaba	-23.64939	30.66064	С
EWR 4	Letaba Ranch	Groot Letaba	-23.67753	31.09864	Е
EWR 5	Klein Letaba	Klein Letaba	-23.25081	30.49572	В
EWR 6	Lonely Bull	Groot Letaba	-23.75264	31.40731	D
EWR 7	Letaba Bridge	Groot Letaba	-23.80983	31.59081	D

Details of the EWR sites selected during the 2006 EWR study

ECOCLASSIFICATION RESULTS (LEVEL IV)

The 2006 EcoClassification results were updated using the EcoClassification models as well as additional information that has become available since the 2006 study. The results (2013) are summarised below.

Summary of the updated 2006 EcoClassification results

Component	EWR 1	EWR 3	EWR 4	EWR 7	EWR 2	EWR 5
Physico chemical	В	B/C	B/C	В	С	B/C
Geomorphology	C/D	D	C/D	С	D	C/D
Fish	С	С	С	С	C/D	С
Invertebrates	С	С	С	С	С	C/D
Riparian vegetation	С	C/D	С	С	D	С
EcoStatus	С	С	С	С	D	С

EWR RESULTS AT EWR SITES (KEY BIOPHYSICAL NODES)

The 2006 EWR results were updated using the updated natural and present day hydrology. The PES results are summarised below as percentage of the natural Mean Annual Runoff (nMAR). The Recommended Ecological Category (REC) is an improvement on the Present Ecological State (PES) at EWR 3, 4 and 7 and these results are also provided.

Updated 2006 EWR results

				Long term mean					
EWR site	PES	nMAR (MCM) ¹	pMAR ² (MCM)	Low flows (MCM)	Low flows (%nMAR)	High flows (MCM)	High flows (%nMAR)	Total flows (MCM)	Total (%nMAR)
EWR 1	С	99.84	53.1	10.807	10.8	9.2	9.215	19.998	20
EWR 2	С	116.55	76.42	17.865	15.3	9.799	8.4	27.664	23.7
EWR 3	С	394.91	181.98	23.72	6	22.235	5.6	45.955	11.6
EWR 4	D	441.39	217.92	52.057	11.8	56.547	12.8	108.604	24.6
EWR 5	С	124.18	67.08	4.831	3.9	15.036	12.1	19.867	16
EWR 7	B/C	646.28	360.69	47.772	7.4	60.983	9.4	108.755	16.8
EWR site	REC	nMAR (MCM)	pMAR (MCM)	Low flows (MCM)	Low flows (%nMAR)	High flows (MCM)	High flows (%nMAR)	Total flows (MCM)	Total (%nMAR)
EWR 3	B/C	394.91	181.98	31.544	8	27.04	6.8	58.584	14.8
EWR 4	B/C	441.39	217.92	39.887	9	44.857	10.2	84.744	19.2
EWR 7	В	646.28	360.69	50.173	7.8	65.165	10	115.338	17.8

1 Million Cubic Meters

2 Present MAR

ECOCLASSIFICATION RESULTS AT THE DESKTOP BIOPHYSICAL NODES

The PES and Ecological Importance (EI) - Ecological Sensitivity (ES) (PESEIS; DWA, 2013b)) study results were used to determine the PES and REC. These results are summarised below and includes the Integrated Environmental Importance (IEI) of the nodes.

Node name	River	(EC ¹)	IEI	REC
B81A-00242	Broederstroom	С	3	В
B81A-00256		D	3	D
B81A-00263		D	2	D
B81A-00270	Broederstroom	С	5	С
B81B-00233	Mahitse	С	4	С
B81B-00234	Mahitse	С	3	С
B81B-00246	Politsi	С	5	С
B81B-00251		D	2	D
B81B-00269	Morudi	В	5	В
B81B-00227	Mahitse	D	3	D
B81B-00240	Politsi	С	3	С
B81D-00277	Thabina	D	3	D
B81D-00280	Bobs	В	5	В
B81D-00296	Mothlaka-Semeetse	В	5	В
B81D-00272	Letsitele	С	5	С

Summary of the EcoClassification results at the desktop biophysical nodes

Node name	River	PES (EC ¹)	IEI	REC
B81E-00213	Nwanedzi	D	3	С
B81F-00189	Merekome	С	3	С
B81F-00203	Lerwatlou	С	3	С
B81F-00228	Reshwele	В	4	В
B81F-00232	Makwena	В	4	В
B81G-00164	Molototsi	D	2	D
B81H-00162	Metsemola	С	3	С
B81H-00171	Molototsi	D	2	D
B81J-00187	Mbhawula	С	3	С
B82A-00168	Middel Letaba	С	3	С
B82B-00173	Koedoes	D	2	D
B82C-00175	Brandboontjies	E	3	D
B82D-00163	Lebjelebore	С	3	С
B82D-00154	Middel Letaba	D	2	D
B82D-00166	Mosukodutsi	D	2	D
B82E-00149	Khwali	В	5	В
B82E-00150	Little Letaba	С	3	С
B82F-00141	Soeketse	С	3	С
B82F-00128	Little Letaba	С	3	С
B82F-00137	Little Letaba	D	2	D
B82H-00127	Nsama	С	3	С
B82H-00139	Magobe	В	4	В
B82H-00157	Nsama	В	4	В
B82J-00197	Ka-Malilibone	В	4	В

1 Ecological Category

EWR RESULTS AT THE DESKTOP BIOPHYSICAL NODES

The Revised Desktop Reserve Model (RDRM) was used to estimate EWRs at all desktop biophysical nodes, excluding those that fall in its totality in conservation areas. The results are summarised in the table below.

	MAR (1	0 ⁶ m ³)		Long-term requirements				
Node	Network	PD ¹	REC	Low flows		Total flows		
	Naturai			10 ⁶ m ³	%MAR	10 ⁶ m ³	%MAR	
B81A-00242	23.83	15.16	С	3.310	13.9	5.215	21.9	
B81A-00256	16.34	12.18	D	2.499	15.3	3.573	21.9	
B81A-00263	5.75	4.00	D	0.867	15.1	1.258	21.9	
B81A-00270	44.47	29.99	С	8.447	19.0	12.043	27.1	
B81B-00227	13.60	10.77	D	2.006	14.8	3.005	22.1	
B81B-00233	2.69	2.08	С	0.500	18.6	0.738	27.4	

EWR results at the desktop biophysical nodes

	MAR (10 ⁶ m ³)			Long-term requirements			
Node		PD ¹	REC	Low	flows	Total flows	
	Naturai			10 ⁶ m ³	%MAR	10 ⁶ m ³	%MAR
B81B-00234	10.13	8.06	С	2.150	21.2	3.013	29.8
B81B-00240	38.98	22.79	С	4.445	11.4	7.455	19.1
B81B-00246	36.26	20.80	С	3.616	10.0	6.406	17.7
B81B-00251	1.34	0.98	D	0.094	7.0	0.206	15.4
B81B-00269	1.95	1.95	В	0.465	23.9	0.675	34.6
B81D-00272	91.27	57.51	С	13.288	14.6	20.084	22.0
B81D-00277	25.28	18.90	D	1.053	4.2	3.276	13.0
B81D-00280	18.51	13.95	В	3.647	19.7	5.417	29.3
B81D-00296	10.53	8.85	В	2.637	25.0	3.645	34.6
B81E-00213	17.28	11.31	С	0.302	1.7	1.392	8.1
B81F-00189	4.74	4.08	С	0.062	1.3	0.337	7.1
B81F-00203	3.74	3.08	С	0.071	1.9	0.328	8.8
B81F-00228	3.53	2.87	В	0.030	0.8	0.322	9.1
B81F-00232	2.75	2.54	В	0.094	3.4	0.347	12.8
B81G-00164	16.72	14.30	D	0.072	0.4	1.110	6.6
B81H-00162	0.64	0.59	С	0.012	1.9	0.063	9.8
B81H-00171	25.84	22.60	D	0.254	1.0	1.671	6.5
B81J-00187	2.53	2.53	С	0.014	0.5	0.247	9.8
B82A-00168	31.12	25.07	С	4.339	13.9	7.564	24.3
B82B-00173	23.13	15.76	D	1.377	6.0	2.848	12.3
B82D-00154	40.53	32.96	D	3.527	8.7	7.025	17.3
B82D-00163	4.90	4.29	С	0.818	16.7	1.261	25.8
B82D-00166	42.25	27.77	D	1.776	4.2	4.296	10.2
B82E-00149	4.51	4.02	В	0.126	2.8	0.624	13.9
B82E-00150	3.48	3.08	С	0.037	1.1	0.558	16.0
B82F-00128	32.13	30.26	С	1.595	5.0	4.962	15.4
B82F-00137	13.64	12.42	D	0.063	0.5	1.319	9.7
B82F-00141	7.32	7.19	С	0.115	1.6	0.935	12.8
B82H-00127	6.91	4.42	С	0.067	1.0	0.730	10.6
B82H-00139	3.10	3.10	В	0.021	0.7	0.463	14.9
B82H-00157	11.72	9.21	В	0.202	1.7	1.683	14.4
B82J-00197	0.66	0.64	В	0.023	3.5	0.091	13.8

1 Present Day

LINKS OF ECOSYSTEM GOODS, SERVICES AND ATTRIBUTES TO AN IMPROVED REC

All biophysical nodes where improvements are required were assessed to determine how the Ecosystem Goods, Services and Attributes (EGSA) will respond to this improvement. The relevant nodes and key responses are:

• EWR 4: The REC should result in higher flows, more frequent flushing of riffles and thus an increase in in-stream habitat conditions. This could positively impact the aesthetic qualities of the river and may have some importance for recreational utilisation. Malaria may be reduced

as flows will be increased and potentially has a positive impact for people in the reserve. Acceptable perennial flows are advantageous for eco-tourism regarding the aesthetic qualities.

- EWR 7: The REC should result in higher flows, more frequent flushing of riffles and thus an increase in in-stream habitat conditions and could positively impact the aesthetic qualities of the river and have some importance for recreational utilisation. Malaria may be reduced and this has potentially positive impact for people in the reserve. Acceptable perennial flows are advantageous for eco-tourism regarding the aesthetic qualities.
- B81A-00242: This reach is exclusively rural, with no towns or villages noted. The REC will result in the restoration of large wetland areas through the removal of forestry from wetland and riparian areas. This will improve habitat diversity, flood attenuation and most importantly streamflow and water provision to downstream reaches and have a net positive benefit for ecosystems services. The indigenous species has no/limited utilization potential (no angling) and hence the primary utilization of the fish resource is recreational fishing of the alien trout. An ecological improvement towards the REC may therefore require eradication/decrease of trout and hence a decrease in the utilization potential of the reach.
- B81E-00213 Upper area: The reach is rural in nature with the upper half being commercial farmlands; highly developed with many small dams and weirs. A general improvement of the area through attaining the REC would probably lead to higher aesthetic values being attached to the area and this may have some impact on recreational activities. Legally compliant forestry practices will improve habitat diversity, flood attenuation and most importantly streamflow and water provision to downstream reaches. All of these improvements would potentially have a net positive benefit for ecosystems services and downstream users. An increase in the fish stock may increase the availability of fish for utilization and an improvement in irrigation practices (including return flows and abstractions) should result in an improvement in overall water quality.
- B81E-00213 Lower area: The general improvement of the area through attaining the REC would probably lead to higher aesthetic values being attached to the area and this may have some impact on recreational activities. Management of nutrient levels and water abstraction will improve the present state of water quality with net positive results downstream to users. An improvement in EC for fish will increase the availability of fish for utilization. Vegetation use and removal are dominant and it is unlikely to manage these in a way that will improve the PES and as such little positive impact would be expected.

TABLE OF CONTENTS

1	INTR	ODUCTION	1-1
	1.1	BACKGROUND	1-1
	1.2	INTEGRATED STEP 3: QUANTIFY EWRS AND CHANGES IN NON-WATER QU	IALITY
		ECOSYSTEM SERVICES	1-2
	1.3	REPORT STRUCTURE	1-2
2	SUM	MARY OF EWR RESULTS AT EWR SITES (KEY BIOPHYSICAL NODES)	2-1
	2.1	LETABA CATCHMENT RESERVE DETERMINATION STUDY	2-1
	2.2	RESOURCE UNITS	2-1
	2.3	EWR SITES	2-4
		2.3.1 Selection of EWR sites	2-4
		2.3.2 Description of the EWR sites	2-4
3	ECO	CLASSIFICATION RESULTS AT EWR SITES	3-1
	3.1	EWR 1 APPEL PES	3-1
	3.2	EWR 3 PRIESKA PES	3-1
	3.3	EWR 4 LETABA RANCH PES	3-2
	3.4	EWR 7 LETABA BRIDGE PES	3-2
	3.5	EWR 2 LETSITELE PES	3-2
	3.6	EWR 5 KLEIN LETABA PES	3-3
	3.7	PES ECOSTATUS SUMMARY (2004, 2011, 2013)	3-3
4	EWR	RESULTS AT EWR SITES	4-1
	4.1	2006 EWR RESULTS	4-1
	4.2	REVISION OF EWR RESULTS	4-1
	4.3	EXTRAPOLATED EWRS	4-5
5	DES	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY	AND
5	DES ECO	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION	AND 5-1
5	DES ECO 5.1	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION	AND 5-1 5-1
5	DES ECO 5.1 5.2	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION	AND 5-1 5-1
5	DES ECO 5.1 5.2 5.3	KTOPBIOPHYSICALNODES:RESOURCEUNITS,LOCALITYCLASSIFICATIONDESKTOP RESOURCE UNITSDESKTOP RESOURCE UNITSDESKTOP BIOPHYSICAL NODESDESKTOP BIOPHYSICAL NODESDESKTOP ECOCLASSIFICATIONDESKTOP ECOCLASSIFICATIONDESKTOP ECOCLASSIFICATION	AND 5-1 5-1 5-3
5	DES ECO 5.1 5.2 5.3 DES	KTOPBIOPHYSICALNODES:RESOURCEUNITS,LOCALITYCLASSIFICATIONDESKTOP RESOURCE UNITSDESKTOP BIOPHYSICAL NODESDESKTOP BIOPHYSICAL NODESDESKTOP ECOCLASSIFICATIONKTOP BIOPHYSICAL NODES:APPROACH TO ESTIMATING EWRS AND RESU	AND 5-1 5-1 5-3 LTS
5	DES ECO 5.1 5.2 5.3 DES	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION	AND 5-1 5-1 5-3 LTS 6-1
6	DES ECO 5.1 5.2 5.3 DES 6.1	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION DESKTOP ECOCLASSIFICATION DESKTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND DESKTOP DESKTOP DESKTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU	AND 5-1 5-1 5-3 LTS 6-1
6	DES ECO 5.1 5.2 5.3 DES 6.1 6.2	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION CLASSIFICATION DESKTOP ECOCLASSIFICATION DESKTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND APPROACH DESKTOP DESKTOP BIOPHYSICAL NODES: APPROACH	AND 5-1 5-1 5-3 LTS 6-1 6-1
6	DES ECO 5.1 5.2 5.3 DES 6.1 6.2	KTOPBIOPHYSICALNODES:RESOURCEUNITS,LOCALITYCLASSIFICATIONDESKTOP RESOURCE UNITSDESKTOP BIOPHYSICAL NODESDESKTOP ECOCLASSIFICATIONDESKTOP ECOCLASSIFICATIONCAL NODES:APPROACH TO ESTIMATING EWRS AND RESUBACKGROUNDAPPROACHBiophysical nodes and associated information provided	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1
6	DES ECO 5.1 5.2 5.3 DES 6.1 6.2	KTOPBIOPHYSICALNODES:RESOURCEUNITS,LOCALITYCLASSIFICATIONDESKTOP RESOURCE UNITSDESKTOP BIOPHYSICAL NODESDESKTOP ECOCLASSIFICATIONDESKTOP ECOCLASSIFICATIONCOCCLASSIFICATIONCOCCLASSIFICATIONKTOP BIOPHYSICAL NODES:APPROACH TO ESTIMATING EWRS AND RESUBACKGROUNDAPPROACH6.2.1Biophysical nodes and associated information provided6.2.2SPATSIM setup	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1
5	DES ECO 5.1 5.2 5.3 DES 6.1 6.2	KTOPBIOPHYSICALNODES:RESOURCEUNITS,LOCALITYCLASSIFICATIONDESKTOP RESOURCE UNITSDESKTOP BIOPHYSICAL NODESDESKTOP ECOCLASSIFICATIONDESKTOP ECOCLASSIFICATIONCOCCLASSIFICATIONCOCCLASSIFICATIONKTOP BIOPHYSICAL NODES:APPROACH TO ESTIMATING EWRS AND RESUBACKGROUNDAPPROACH6.2.1Biophysical nodes and associated information provided6.2.2SPATSIM setup6.2.3Data requirements and assessment	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-2
5	DES ECO 5.1 5.2 5.3 DES 6.1 6.2	KTOPBIOPHYSICALNODES:RESOURCEUNITS,LOCALITYCLASSIFICATIONDESKTOP RESOURCE UNITSDESKTOP BIOPHYSICAL NODESDESKTOP ECOCLASSIFICATIONDESKTOP ECOCLASSIFICATIONMODES:APPROACH TO ESTIMATING EWRS AND RESUBACKGROUNDAPPROACHDESKTOP IOPHYSICAL NODES and associated information provided6.2.1Biophysical nodes and associated information provided6.2.2SPATSIM setup6.2.3Data requirements and assessment6.2.4Modelling	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-2 6-4
5	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-1 6-4 6-4
5 6 7	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION CARDER BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND 6.2.1 Biophysical nodes and associated information provided 6.2.2 SPATSIM setup 6.2.3 Data requirements and assessment 6.2.4 Modelling RESULTS OF EGSA TO IMPROVED ECOLOGICAL CATEGORY	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-2 6-4 6-4 6-4 6-4
5 6 7	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION CTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND APPROACH Desktop provided 6.2.1 Biophysical nodes and associated information provided 6.2.2 SPATSIM setup Exercise 6.2.3 Data requirements and assessment 6.2.4 Modelling RESULTS OF EGSA TO IMPROVED ECOLOGICAL CATEGORY EWR 4	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-4 6-4 6-4 6-4 6-4 6-4
5 6 7	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1 7.2	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION DESKTOP ECOCLASSIFICATION DESKTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND APPROACH DESKTOP IOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND DESKTOP IOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND DESKTOP IOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND DESKTOP IOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND DESKTOP IOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND DESKTOP IOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND BACKGROUND DESKTOP IOPHYSICAL NODES: APPROACH IOPHYSICAL IOPHYS	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-2 6-4 6-4 6-4 7-6 7-6
5 6 7	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1 7.2 7.3	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES. DESKTOP ECOCLASSIFICATION DESKTOP ECOCLASSIFICATION KTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND APPROACH Description 6.2.1 Biophysical nodes and associated information provided Description 6.2.2 SPATSIM setup DEscription 6.2.3 Data requirements and assessment Description 6.2.4 Modelling Modelling RESULTS OF EGSA TO IMPROVED ECOLOGICAL CATEGORY EWR 4 EWR 7 B81A-00242 Description	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-1 6-4 6-4 6-4 7-6 7-6 7-6
5 6 7	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1 7.2 7.3 7.4	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION CATOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND APPROACH APPROACH 6.2.1 Biophysical nodes and associated information provided 6.2.2 SPATSIM setup 6.2.3 Data requirements and assessment 6.2.4 Modelling RESULTS OF EGSA TO IMPROVED ECOLOGICAL CATEGORY EWR 4 EWR 7 B81A-00242 B81E-00213: Upper area	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-4 6-4 6-4 7-6 7-6 7-6
5	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1 7.2 7.3 7.4 7.5	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION KTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESU BACKGROUND APPROACH 6.2.1 Biophysical nodes and associated information provided 6.2.2 SPATSIM setup 6.2.3 Data requirements and assessment 6.2.4 Modelling RESULTS OF EGSA TO IMPROVED ECOLOGICAL CATEGORY EWR 4 EWR 7 B81A-00242 B81E-00213: Upper area B81E-00213: lower area Destate and assessment	AND 5-1 5-1 5-3 LTS 6-1 7-6 7-6 7-6 7-6
5 6 7 8	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1 7.2 7.3 7.4 7.5 REFI	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-2 6-4 6-4 7-6 7-6 7-6 7-8 7-8 7-8
5 6 7 8 9	DESI ECO 5.1 5.2 5.3 DESI 6.1 6.2 6.3 LINK 7.1 7.2 7.3 7.4 7.5 REFI APP	KTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY CLASSIFICATION DESKTOP RESOURCE UNITS DESKTOP BIOPHYSICAL NODES DESKTOP ECOCLASSIFICATION DESKTOP ECOCLASSIFICATION KTOP BIOPHYSICAL NODES: APPROACH DESTIMATING EWRS AND RESU BACKGROUND APPROACH. Biophysical nodes and associated information provided. 6.2.2 SPATSIM setup 6.2.3 Data requirements and assessment. 6.2.4 Modelling RESULTS OF EGSA TO IMPROVED ECOLOGICAL CATEGORY EWR 4 EWR 7 Bata-00242 B81E-00213: Upper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00213: Iupper area B81E-00	AND 5-1 5-1 5-3 LTS 6-1 6-1 6-1 6-1 6-1 6-1 6-4 6-4 7-6 7-6 7-6 7-8 7-8 7-8 8-1 9-1

		10.1.1	Baseline low flow EWR requirements	. 10-1
		10.1.2	High flows	. 10-4
11	APP	ENDIX C	EWR RESULTS AS RDRM OUPUT	. 11-1
	11.1	EWR 1:	APPEL	. 11-1
		11.1.1	Hydrology data summary	. 11-1
		11.1.2	Hydraulics data summary	. 11-1
		11.1.3	Flow - stressor response data summary	. 11-2
		11.1.4	High flow estimation summary details	. 11-2
		11.1.5	Final Reserve summary details	. 11-3
		11.1.6	Flow duration and Reserve assurance tables	. 11-3
	11.2	EWR 2:	· LETSITELE	. 11-7
		11.2.1	Hydrology data summary	. 11-7
		11.2.2	Hydraulics data summary	. 11-8
		11.2.3	Flow - stressor response data summary	. 11-8
		11.2.4	High flow estimation summary details	. 11-8
		11.2.5	Final Reserve summary details	. 11-9
		11.2.6	Flow duration and Reserve assurance tables	. 11-9
	11.3	EWR 3:	PRIESKA	11-14
		11.3.1	Hydrology data summary	11-14
		11.3.2	Hydraulics data summary	11-14
		11.3.3	Flow - stressor response data summary	11-15
		11.3.4	High flow estimation summary details	11-15
		11.3.5	Final Reserve summary details	11-16
		11.3.6	Flow duration and Reserve assurance tables	11-16
	11.4	EWR 4:	Letaba ranch	11-20
		11.4.1	Hydrology data summary	11-20
		11.4.2	Hydraulics data summary	11-21
		11.4.3	Flow - stressor response data summary	11-21
		11.4.4	High flow estimation summary details	11-21
		11.4.5	Final Reserve summary details	11-22
		11.4.6 EM/D E	Flow duration and Reserve assurance tables	11-22
	11.5	EWR 5:	KLEIN LETABA	11-27
		11.5.1	Hydrology data summary	11-27
		11.5.2	Hydraulics data summary	11-27
		11.0.3	Flow - Stressor response data summary	11-27
		11.3.4 11 E E	Figh now estimation summary details	11-20
		11.5.5	Final Reserve summary details	11-20
	116	FI.5.0		11-29
	11.0	EVVR 7.	Le I ADA RANCH	11-00
		11.0.1	Hydroulies data summary	11-33
		1162	Flow - strossor rosponso data summany	11-34
		1161	High flow estimation summary details	11_21
		1165	Final Reserve summary details	11_25
		1166	Flow duration and Reserve assurance tables	11_25
		11.0.0		11-00

LIST OF TABLES

Table 2.1	Description and rationale of the Resource Units	2-2
Table 2.2	Details of the FWR sites selected during 2003 in WMA 2	2-4
Table 2.3	Characteristics and view of EWR 1	.2-4
Table 2.4	Characteristics and view of EWR 2	.2-5
Table 2.5	Characteristics and view of EWR 3	.2-5
Table 2.6	Characteristics and view of EWR 4	.2-6
Table 2.7	Characteristics and view of EWR 5	.2-7
Table 2.8	Characteristics and view of EWR 6	. 2-7
Table 2.9	Characteristics and view of EWR 7	. 2-8
Table 3.1	EWR 1: PES using the updated EcoStatus suite of models	. 3-1
Table 3.2	EWR 3: PES using the updated EcoStatus suite of models	. 3-1
Table 3.3	EWR 4: PES using the updated EcoStatus suite of models	. 3-2
Table 3.4	EWR 7: PES using the updated EcoStatus suite of models	. 3-2
Table 3.5	EWR 2: PES using the updated EcoStatus suite of models	. 3-2
Table 3.6	EWR 5: PES using the updated EcoStatus suite of models	. 3-3
Table 3.7	Comparison of PES EcoStatus	. 3-3
Table 3.8	Summary of 2013 PES (Level IV) results	. 3-4
Table 4.1	EWR 1 Appel: Low flow EWR results for PES: C	. 4-1
Table 4.2	EWR 2 Letsitele Tank: Low flow EWR results for PES: C	. 4-2
Table 4.3	EWR 3 Prieska: Low flow EWR results for PES (C) and REC (B/C)	. 4-2
Table 4.4	EWR 4 Letaba Ranch: Low flow EWR results for PES (C) and REC (B/C)	. 4-2
Table 4.5	EWR 5 Klein Letaba: Low flow EWR results for PES: C	. 4-3
Table 4.6	EWR 7 Letaba Bridge: Low flow EWR results for PES (B/C) and REC (B)	. 4-3
Table 4.7	High flow EWR results the EWR sites	. 4-3
Table 4.8	Summary of PES results as a percentage of the natural MAR (nMAR)	. 4-5
Table 4.9	Summary of REC results as a percentage of the natural MAR (nMAR)	. 4-5
Table 4.10	Biophysical nodes	. 4-5
Table 5.1	List of all nodes and coordinates	. 5-1
Table 5.2	Summary of results for the desktop biophysical nodes	. 5-3
Table 6.1	Stress-index parameter values for fish guilds used in the RDRM	. 6-4
Table 6.2	Summary of Desktop EWRs for the biophysical nodes in the Letaba F	River
	Catchment	. 6-4
Table 9.1	Summary of the EcoClassification results	. 9-1
Table 10.1	Summary of the EWR requirements	10-1
Table 10.2	Summary of the high flows	10-4

LIST OF FIGURES

Figure 1.1	Study area: Letaba River Catchment (DWA, 2013a)	1-1
Figure 2.1	Locality of the chosen EWR sites in the Letaba catchment	<u>2-9</u>
Figure 6.1	The Letaba River Catchment Classification Project visual setup in SPATS	IM,
	showing the SQ catchments, rivers, major dams, biophysical nodes (light re	əd)
	and EWR sites (yellow)	<u> </u> 3-2

TERMINOLOGY AND ACRONYMS

AEC	Alternative Ecological Categories
ASPT	Average Score Per Taxon
CD: RDM	Chief Directorate: Resource Directed Measures
DEM	Digital Elevation Model
DRM	Desktop Reserve Model
DWA	Department of Water Affairs
EC	Ecological Category
EcoSpecs	Ecological Specifications
EGSA	Ecosystem Goods, Services and Attributes
El	Ecological Importance
EIS	Ecological Importance and Sensitivity
ES	Ecological Sensitivity
EWR	Ecological Water Requirement
FD	Fast Deep fish habitat
FROC	Frequency of Occurrence
FS	Fast Shallow fish habitat
GAI	Geomorphological Driver Assessment Index
GIS	Geographical Information System
gz	Geomorphological zone
IEI	Integrated Environmental Importance
IFR	Instream Flow Requirements
IUA	Integrated Unit of Analysis
KNP	Kruger National Park
LL	Large limnophilics
LR	Large rheophilics
LSR	Large semi-rheophilics
MAR	Mean Annual Runoff
МСМ	Million Cubic Meters
MIRAI	Macro Invertebrate Response Assessment Index
NFEPA	National Freshwater Ecosystem Priority Areas
NGI	National Geo-Spatial Information
nMAR	Natural MAR
PAI	Physico-chemical Driver Assessment Index
PD	Present Day
PES	Present Ecological State
PESEIS	Present Ecological State and Ecological Importance -Ecological Sensitivity
pMAR	Present MAR
PSP	Professional Service Provider
Quat	Quaternary catchment
RDRM	Revised Desktop Reserve Model
REC	Recommended Ecological Category
RQO	Resource Quality Objective
RU	Resource Units
SASS	South African Scoring System
SI	Socio-cultural Importance
SL	Small limnophilics
SPATSIM	Spatial and Time Series Information Modelling
SQ	Sub-quaternary (may also be termed a quinary)
SR	Small rheophilics
SRTM	Shuttle Remote Topography Mission
SSR	Small semi-rheophilics
TPCs	Thresholds of Potential Concern

Classification & RQO: Letaba Catchment

Water Management Area
Water Management System
Water Research Commission
Water Resources Classification System
Water Resource Use Importance

1 INTRODUCTION

1.1 BACKGROUND

The Chief Directorate: Resource Directed Measures (CD: RDM) of the Department of Water Affairs (DWA) initiated a study during 2012 for the provision of professional services to undertake the implementation of the Water Resources Classification System (WRCS) and determination of the Resource Quality Objectives (RQOs) for significant water resources in the Letaba catchment. Rivers for Africa was appointed as the Professional Service Provider (PSP) to undertake this study (DWA, 2013a). The study area is the catchment of the Letaba River, Water Management Area (WMA) 2, and illustrated in Figure 1.1.

Figure 1.1 Study area: Letaba River Catchment (DWA, 2013a)

During 1994, an Instream Flow Requirements (IFR) study was undertaken for the Letaba River. This was one of the first IFR studies ever undertaken by DWA and the first IFR study where hydraulics was considered. This study was refined during 1996. The focus of these studies was downstream of Tzaneen Dam. A Comprehensive Reserve study was then undertaken and finalised in 2006. This study included seven EWR sites of which five were in the main river, one in the Letsitele and one in the Middle Letaba River. This EWR study included a scenario phase and the output of this study was that a Scenario 6.2 was selected as the Reserve (DWA, 2012).

It was recognised that the hydrology used for the 2006 Ecological Water Requirement (EWR) study was out-dated. Reserve results are generated as an EWR rule which is a flow duration table. The natural simulated hydrology is used to generate the final output. If the hydrology changes, then the final EWR output is invalid, especially if changes are significant. Therefore, the basis of the EWRs (dry and wet drought and maintenance EWRs) has to be used to generate new EWR rules based

on the original habitat requirements. The problem is further exacerbated as the EWR data and the scenarios that were developed towards the end of the 2006 study were not stored in the incorrect format within the Spatial and Time Series Information Modelling (SPATSIM) framework and therefore adjustments and changes required for future scenario evaluation cannot be made (DWA, 2012). The existing results therefore have been converted within SPATSIM if possible. Additional work and monitoring have taken place specifically focussed on EWR 3 (Letaba River close to Die Eiland Resort) and on EWR 7 in the Kruger National Park (KNP). Due to the higher confidence in these sites, they should act as drivers for decision-making on scenarios.

1.2 INTEGRATED STEP 3: QUANTIFY EWRS AND CHANGES IN NON-WATER QUALITY ECOSYSTEM SERVICES

In summary, this task consists of the EcoClassification and EWR determination at various biophysical nodes in the system. This task consists of the following subtasks:

- Task D3.1. Setting up the system model and provision of natural and present day data As indicated in the section above, the hydrology has been revised as part of the Development of the Reconciliation Strategy for the Luvuvhu and Letaba Water Supply System and will be used for the EWR assessment.
- Task D3.2. EWRs for key biophysical nodes
 EWRs were set at seven EWR sites (key biophysical nodes) during the comprehensive 2006 study. These EWRs had to be revised based on the new hydrology during this study.
- Task D3.3. EWRs for desktop biophysical nodes. As the comprehensive 2006 study only addressed the EWRs at the EWR sites, EWRs must now be estimated at desktop biophysical nodes which are representative of the whole catchment.
- Task D3.4. Consequences of Ecosystem Goods, Services and Attributes (EGSA) at sites where the Recommended Ecological Category (REC) is an improvement of the Present Ecological State (PES)

During Task D1, the REC for all the biophysical nodes was established. The Ecosystem Services were also identified at these sites. At sites where the REC is set to improve the PES, the links (response) to the identified Services are identified.

• Task D3.5. EWR report This report.

This task provides the information for the next step, i.e. Step D4: Identification and evaluation of operational scenarios to identify consequences.

1.3 REPORT STRUCTURE

The report outline is provided below.

Chapter 1: Introduction

This Chapter provides general background to the project Task.

Chapter 2: Summary of EWR results at EWR sites (Key biophysical nodes)

The Chapter summarises certain aspects of the 2006 Reserve study undertaken by Pulles Howard & de Lange Inc. undertaken during April 2003 and March 2006. The focus of this Chapter is on the Resource Units and EWR sites selected during the 2006 study.

Chapter 3: EcoClassification results at EWR sites

EcoClassification results per EWR site are provided comparing the 2006 Reserve results with 2013 results achieved by using updated data and current EcoClassification models.

Chapter 4: EWR results at EWR sites

The focus of this chapter is on the revision of the EWR results. The updated results were generated by using the measured hydraulic cross-sections and hydraulic modelling data at EWR sites and the updated hydrology to populate the Revised Desktop Reserve Model (RDRM) (Hughes et al., 2012) in SPATSIM. The results for the low flows are provided per EWR site and the high flows are summarised for all the EWR sites. A summary of the results compared to the natural MAR (NMAR) is also provided.

Chapter 5: Desktop biophysical nodes: Resource Units, locality and EcoClassification

The Sub-Quaternary river reaches (SQs) forms the basis of the PES (11) (DWA, 2013b) assessment and are therefore surrogates for desktop level Resource Units. Desktop biophysical nodes are listed and a summary of results for the desktop biophysical nodes are provided.

Chapter 6: Desktop biophysical nodes: Approach to estimating EWRs and results

This chapter provides the general approach used during this study to estimate the EWRs at the biophysical nodes using the Revised Desktop Reserve Model (RDRM) which includes the links and relationships between hydrology, hydraulics and ecological response.

Chapter 7: Link of EGSA to improved Ecological Category

All biophysical nodes where improvements are required were assessed to determine how the Ecosystem Goods, Services and Attributes (EGSA) will respond to this improvement. The results are summarised in this Chapter.

Chapter 8: References

Appendix A: 2006 EcoClassification Results

The EcoClassification Results of the 2006 Reserve study is summarised in this Appendix.

Appendix B: 2006 EWR results

A summary of the EWR requirements as well as the high flows determined during the 2006 Reserve study is summarised in this Appendix.

Appendix C: EWR results as RDRM output

The Revised Desktop Reserve Model outputs for every EWR site are provided.

2 SUMMARY OF EWR RESULTS AT EWR SITES (KEY BIOPHYSICAL NODES)

2.1 LETABA CATCHMENT RESERVE DETERMINATION STUDY

Due to the conflicting water uses and the need for compulsory licences in order to achieve resource protection and equity needs, the CD: RDM commissioned The LETABA CATCHMENT RESERVE DETERMINATION STUDY during 2003. The study will be referred to in this document as the 2006 comprehensive study. Pulles Howard & de Lange Inc. undertook the study and it was conducted over a three-year period between April 2003 and March 2006.

This study followed comprehensive methods for EcoClassification as well as for Ecological Water Requirement determination and was based on the generic 8-step process (DWAF, 1999). The focus of the study was on the Groot Letaba River and its major tributaries the Klein Letaba, Middle Letaba, Letsitele and Molototsi rivers. The overall objectives of this study as outlined in DWAF (2006a) were as follows:

- Groundwater Scoping: Clarifying the need for a groundwater study, based on a review of available information, focusing on the significance of groundwater to wetlands and surface flows, and the importance of groundwater to current and potential users in the catchment.
- Wetlands Scoping: Clarifying the need for a wetland study, based on a review of available information, focussing on the ecological importance of wetlands in the catchment, and the links between wetlands, rivers and groundwater;
- Determine the Present Ecological State (PES): Defining reference conditions and classifying each Resource Unit in which EWR sites were selected, in terms of the PES of the main ecological drivers and ecological responses and integrating the PES results of individual ecological components into an overall EcoStatus.
- Recommended Ecological Category (REC) and Alternative Ecological Categories (AEC): To recommend an Ecological Category (EC) and alternative categories, based on the results of the PES, and assess the trends (changes) that were likely to take place, the Ecological Importance and Sensitivity (EIS), Socio-cultural Importance (SI), as well as an assessment of practicality of improving ecological conditions.
- Ecological Water Requirements: Recommending and motivating specific low and high flows for maintaining ecological conditions within a specific ecological category, and presenting the results in the form of assurance rules for each selected EWR site for each month of the year and for each EC assessed.
- Ecological Reserve: Developing various operational flow scenarios; describing their ecological and socio-economic consequences, and recommending a scenario that minimizes impacts on users and the ecosystem.
- Monitoring: Assessing the suitability of available data for defining baseline conditions for Ecological Reserve monitoring in the Letaba River; recommending additional baseline data requirements, if needed; and defining Ecological Specifications (EcoSpecs) and associated Thresholds of Potential Concern (TPCs) for each monitoring site.
- Capacity Building: Training historically disadvantaged individuals in specific aspects of assessing EWR.

2.2 **RESOURCE UNITS**

A summary of the Resource Units (RUs) defined during the 2006 study (DWAF, 2004) are provided in Table 2.1.

Table 2.1 Description and rationale of the Resource Units

RU	EcoRegion Level 2	Geomorphic zone ¹	Land cover	Rationale	Delineation	Quat ²	
GROOT LETABA RIVER							
RU A	9.02 (80%) 4.02 (20%)	Mountain stream (10%) Foothills (cobble bed) (40%) Rejuvenated Bedrock Fall (20%) Rejuvenated Foothills (30%)	Forestry, citrus farming and irrigated agriculture.	The upper Letaba River catchment is highly afforested and the catchment above Ebenezer Dam, which includes the Dap Naude Dam, is small. There are three weirs between Ebenezer and Tzaneen Dam but due to the short length of this RU (30 km), and the many similar structures in the Groot Letaba River, these weirs were not considered important enough to subdivide this RU. The Tzaneen Dam due to its large size and being instream makes a logical end point to this RU.	Groot Letaba River from the source above Dap Naude Dam, to Ebenezer Dam and down to Tzaneen Dam.	B81A and B81B	
RU B	4.02 (10%) 3.01 (30%) 3.02 (10%) 3.03 (50%)	Rejuvenated Foothills (100%)	Extensive citrus and banana plantations.	This RU is divided at the upper section by the Tzaneen Dam and the lower end by the Prieska weir. The majority of this section of the Letaba River lies in one EcoRegion and one geomorphology zone. The EcoRegions are too small to warrant its own RU. The water quality in this section of the river is driven by the flow releases from Tzaneen Dam and the irrigation usage from the four weirs.	Groot Letaba River from the Tzaneen Dam to Prieska Weir.	B81C B81E B81F	
RU C	3.03 (50%)	Rejuvenated Foothills (100%)	Extensive citrus and banana plantations. Cattle farming and settlements.	This section of the river is approximately 40 km to the confluence with the Klein Letaba at the Kruger National Park (KNP) and consists of one weir namely the Nondweni weir. This section of the river system consists of complex operational rules and is driven by irrigation demands downstream as well as KNP releases. The majority of this section of the Letaba River lies in one EcoRegion and one geomorphology zone.	Groot Letaba from Prieska weir to the confluence with Klein Letaba River.	B81F	
RU D	3.03 (50%) 3.05 (35%) 2.06 (10%) 12.01 (5%)	Rejuvenated Foothills (90%) Gorge (10%)	Some cattle farming and settlements before the border with KNP.	Approximately 95% of this RU lies in one geomorphological zone and there are four EcoRegions. The Habitat Integrity is the same for this whole area, and for reasons of practicality, only one RU was delineated. The water quality does not change in this section of the Letaba River as there are no major anthropogenic influences.	Groot Letaba River from the confluence with the Klein Letaba River to the confluence with the Olifants River.	B81J	

RU	EcoRegion Level 2	Geomorphic zone ¹	Land cover	Rationale	Delineation	Quat ²
RU E	3.02 (60%) 3.03 (40%)	Rejuvenated Bedrock Fall (5%) Rejuvenated Foothills (95%)	Upper reach: Cattle farming, and settlements. Subsistence farming. Middle reach: Commercial irrigated agriculture from Middle Letaba. Lower reach: Largely natural.	The Klein Letaba River has various geomorphological zones and two EcoRegions. The instream habitat integrity is the same for this whole area, and for reasons of practicality, only one RU was delineated for the Klein Letaba River. The water quality does not change in this section of the Klein Letaba River as there are no major anthropogenic influences. The Middle Letaba Dam is located on the Middle Letaba River about 7 km upstream of the confluence of the Middle and Klein Letaba rivers.	Head waters of the Klein Letaba to the confluence with the Groot Letaba River.	В82А- G В82J
LETSIT	ELE RIVER					
RU F	9.02 (20%) 3.01 (80%)	Rejuvenated Bedrock Fall (10%) Rejuvenated Foothills (90%)	Upper reach: Forestry and agricultural estates. Middle and lower reaches: Extensive commercial citrus and fruit farming, rural settlements and communal lands.	The Letsitele River has various geomorphological zones and two EcoRegions. The instream and riparian habitat integrity also has two regions. The water quality does change in the Letsitele from the upper catchment due to the dense settlements in the lower catchment. Only one RU was delineated for the Letsitele River.	Head waters, of the Letsitele down to the confluence with the Groot Letaba River.	B81D
MOLOT	OTSI RIVER					
RU G	4.02 (10%) 3.02 (50%) 3.03 (40%)	Rejuvenated Bedrock Fall (5%) Rejuvenated Foothills (95%)	Rural settlements, rural cattle farming and agriculture.	The Molototsi River has various geomorphological zones and three EcoRegions. The instream and riparian habitat integrity also has only two regions. The water quality does change in the Molototsi River from the upper catchment to the confluence with the Groot Letaba River. The river is highly seasonal with long periods of no flow in the winter months. Only one RU was delineated for the Molototsi River.	Head waters, of the Molototsi down to the confluence with the Groot Letaba River.	B81G B81H
RU H	10.1 (5%) 3.01 (95%)	Mountain stream (5%) Rejuvenated Bedrock Fall (10%) Rejuvenated Foothills (85%)	Upper reach: Nature reserve. Downstream of Thabina Dam: Agricultural plots, villages and informal cattle farming.	The Thabina River consists mainly of one EcoRegion, is a relative short river that is a tributary of the Letsitele River. The instream and riparian habitat integrity also has only two regions. The water quality is not expected to change below the Thabina Dam due to only seepage flow and spilling floodwaters is released from the dam. Only one RU was delineated for the Thabina River.	Upper of the Thabina River (or head waters – above the Thabina Dam) down to the confluence with the Letsitele River.	B81D

1 Geomorphological zonation according to Rowntree and Wadeson (1999) is provided in the table. However six longitudinal zones were identified along the Groot Letaba main stem channel. Zones 1, 4 and 5 were further sub-divided in to two sub-categories (a and b) due to major slope differences and/or tributary junctions. A further two zones were identified in the Klein Letaba. Refer to DWAF (2004) for more detail. 2 Quaternary catchment

2.3 EWR SITES

2.3.1 Selection of EWR sites

Seven EWR sites were selected during 2003 (DWAF, 2004) and are listed in Table 2.2 and their location within WMA 2 is provided in Figure 2.2.

EWR Site	EWR Site name	River	Co-ord	DU	
number			Latitude	Longitude	RU
EWR 1	Appel	Groot Letaba	-23.91769	30.05083	Α
EWR 2	Letsitele Tank	Letsitele	-23.88806	30.36125	F
EWR 3	Hans Marensky	Groot Letaba	-23.64939	30.66064	С
EWR 4	Letaba Ranch	Groot Letaba	-23.67753	31.09864	E
EWR 5	Klein Letaba	Klein Letaba	-23.25081	30.49572	В
EWR 6	Lonely Bull	Groot Letaba	-23.75264	31.40731	D
EWR 7	Letaba Bridge	Groot Letaba	-23.80983	31.59081	D

Table 2.2Details of the EWR sites selected during 2003 in WMA 2

Reasoning for excluding EWR sites from certain river reaches were mainly based on the scale or level of resolution required and are provided below:

- Molototsi River: Due to its highly seasonal nature and the lack of adequate monitoring data. The influence of this river on the Groot Letaba was seen at EWR 4.
- Middle Letaba River: EWR 5 (Klein Letaba) was, selected to be directly downstream of the confluence of Middle and Klein Letaba Rivers. Furthermore the Middle Letaba Dam (used for irrigation and domestic water supply) did not release water downstream into the river.
- Ntsami River: Due to its contribution to the MAR of the Letaba River being small in comparison to the other tributaries.
- Thabina River: Due to its contribution to the Mean Annual Runoff (MAR) of the Letaba River being small in comparison to the other tributaries. An EWR site was chosen in the Letsitele River (EWR 2), of which the Thabina River is the major tributary.

2.3.2 Description of the EWR sites

A description of the EWR sites are provided below based on information from DWAF (2004) and DWAF (2013a).

Site information	Detail	Illustration
EWR site	EWR 1	后义。
Name	Appel	
River	Groot Letaba River	
Co-ordinates	S 23.91769 E 30.05083	
RU	MRU A	
IUA ¹	IUA 1	
SQ ² Reach	B81B-00264	
IEl ³ rating	Very high (4)	
WRUI ⁴ rating	Very high (4)	
Hotspot rating	Very high (4)	12 8 2003 57-

Table 2.3 Characteristics and view of EWR 1

Site information De	etail	Illustration
 EWR site advantages: Single channel characterised by a channel type with floodplain terracinght bank. All habitat types present and limited damage in terms of the structure of and vegetation structure. Few urban rural settlements, one sampling point near EWR site. 	pool rapid ces on the ed flood of the terraces water quality	WR site disadvantages: Flow regulation from Ebenezer Dam and instream weirs. Highly afforested with exotic pine and eucalyptus. Active channel has narrowed due to flow modification and led to vegetation encroachment. Vegetation encroachment due to exotic giant reed Arunda donax. Large boulders complicate low flow modelling; turbulence at low flows - difficult to survey accurate water stage. Dense vegetation on both banks influences overall flow resistance at high flows. Potential water quality impacts due to cultivated agriculture
1 Integrated Unit of Analysia	2 Sub que	(bananas and citrus) and afforestation.

1 Integrated Unit of Analysis 3 Integrated Environmental Importance

2 Sub-quaternary 4 Water Resource Use Importance

Table 2.4 **Characteristics and view of EWR 2**

Site information	Detail	Illustration
EWR site	EWR 2	
Name	Letsitele Tank	
River	Letsitele	
Co-ordinates	S 23.88806 E 30.36125	
MRU	MRU F	
IUA	IUA 2	
SQ Reach	B81D-00271	
IEI rating	High (3)	
WRUI rating	High (3)	
Hotspot rating	High (3)	
 EWR site advantages: One single channel charace riffle channel pattern. Good diverse habitats preserve weir upstream for flow and 	cterised by an incised pool- sent. d water quality records.	 EWR site advantages: Backwater effect of the Groot Letaba during high flow conditions. Vegetation heavily impacted by over-grazing and trampling. River channel at this site is largely degraded due to erosion and local sources of water quality pollution. Water quality is impacted by upstream development dense rural/informal settlements as well as sewage effluent causing eutrophication.

Characteristics and view of EWR 3 Table 2.5

Site information	Detail	Illustration
EWR site	EWR 3	
Name	Prieska	
River	Groot Letaba	
Co-ordinates	S 23.64939 E 30.66064	
MRU	MRU C	
IUA	IUA 4	
SQ Reach	B81F-00200	
IEI rating	Very high (4)	
WRUI rating	High (3)	
Hotspot rating	Very high (4)	

Site information	Detail	Illustration
 EWR site advantages: Characterised by a bedrock small gravels, cobbles and exposed bedrock. Steep be terraces. Location of nearby rated w high flows and flood discha access to the river for man Good diversity of habitat. Water quality monitoring period 	k pool-rapid channel type with sand bars amongst the anks with no benches or eir for the measurement of arges when high flows prohibit ual flow gauging. bints at the Junction weir.	 EWR site disadvantages: Extensive bedrock influence and large roughness elements are inundated at medium to high flows, multiple channels with complex flow patterns and non-uniform flow at low to medium flows. Difficult to measure medium to high flows using manual flow gauging. The short riffle feature at the site becomes drowned-out at reasonably low flows. The 2000 floods scoured the macro-channel floor. The many weirs and dams in this section of the river have caused enhanced sedimentation and accumulation of finer material in some sections of the river. Vegetation encroachment, channel narrowing, sediment trapped in weirs. Large-scale removal of vegetation along the top of the left bank (for irrigation farming) may impact bank stability and vegetation recruitment lower down on the macro- channel banks. Alien invasion vegetation also occurring on the upper banks of the river. Water quality impacts due to intense irrigated agriculture and the use of fertilizers and pesticides. The large volume of water that is captured in weirs also results in algal blooms and elevated chlorophyll levels.

 Table 2.6
 Characteristics and view of EWR 4

Site information	Detail	Illustration
EWR site	EWR 4	
Name	Letaba Ranch	A LOW AND A
River	Groot Letaba	
Co-ordinates	S 23.67753 E 31.09864	and the second s
MRU	MRU E	and the second and the second and the
IUA	IUA 4	
SQ Reach	B81J-00219	
IEI rating	Very high (4)	
WRUI rating	High (3)	the state of the s
Hotspot rating	Very high (4)	
 EWR site advantages: Characterised by a single active channel with an extensive, largely non-vegetated seasonal bar on the left bank. The right bank is dominated by a high ephemeral lateral terrace. Good diversity of habitat. Letaba Ranch weir, upstream of the site for flow records. Water quality monitoring points at Nondweni weir and in Letaba Ranch upstream of EWR site. 		 EWR site disadvantages: Two channels with two different water levels, downstream bedrock sections have non-uniform flow, islands, irregular shapes, potential for non-horizontal water profile at low flows, close to a bend. Some vegetation encroachment and loss of bedrock- influenced channel patterns has occurred. Marginal vegetation limited due to 2000 floods. Flow regulation has resulted in a reduction in wetted area, in depth, velocity over riffles and variation of water level. Naturally dynamic state form periods of vegetated to non-vegetated along the macro-channel floor. Lower riparian zone has a substantial loss cover and abundance along the flood terraces due to the 2000 floods. Dense rural settlements, agriculture encroachment into the riparian vegetation and irrigated agriculture results in water quality problems.

Table 2.7Characteristics and view of EWR 5

Site information	Detail	Illustration
EWR site	EWR 5	
Name	Klein Letaba	
River	Klein Letaba	NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO
Co-ordinates	S 23.25081 E 30.49572	
MRU	MRU B	I Row and a state of the state
IUA	IUA 9	
SQ Reach	B82G-00135	
IEI rating	High (3)	
WRUI rating	Very high (4)	
Hotspot rating Very high (4)		
 EWR site advantages: Reach largely unmodified, limited exposure to direct human changes. Good marginal vegetation and deep slow habitat as well as pools. The pools will be used as refugia during droughts. Terraces on both banks, sandy active channel and seasonal mid-channel bar composed of sand, armoured by gravels and cobbles. Upper riparian zone not altered by floods and flow changes. Marginal vegetation is naturally dynamic. Alien vegetation not an issue at this stage. Water quality monitoring points at Tabaan in Klein Letaba upstream of EWR site and settlements with limited subsistence below confluence with Middle Letaba. 		 Sand bed channel, dynamic system with sand bars and islands with vegetation that complicate hydraulic modelling. No gauging station close to the site for flow records. Not very good cross section for flow measurement. Flow has been altered due to the building of the middle Letaba Dam. Rapid vegetation encroachment on to the macro-channel floor due to reduced flows and floods downstream of this impoundment. The lower riparian zone has a substantial loss of cover and abundance along the flood terraces due to the 2000 floods. Vegetation removal for fire wood and agricultural encroachment a problem. No boulders and limited stones in current data with a very limited velocity range. Marginal vegetation limited. Fast-deep habitat missing but this will be available during

Table 2.8 Characteristics and view of EWR 6

Site information	Detail	Illustration		
EWR site	EWR 6			
Name	Lonely Bull			
River	Groot Letaba	a construction of the second second second second second		
Co-ordinates	S 23.75264 E 31.40731			
MRU	MRU D	The second and the second of the		
IUA	IUA 11			
SQ Reach	B83A-00235			
IEI rating	Very high (4)			
WRUI rating	High (3)			
Hotspot rating	Very high (4)			

Site information	Detail	Illustration
 EWR site advantages: Wide macro-channel with t outcrops occur on the mac on the right bank. The dynamics of vegetation natural. Upper riparian zor flow changes. Enhanced sedimentation h pattern changes, but the 20 many of these. Good habitat diversity. No major impacts in water 	wo active channels. Bedrock ro channel floor and terraces in change appear to be largely ne not altered by floods and as caused some channel 200 floods have reversed quality in the KNP.	 EWR site disadvantages: A pool on the left side, a riffle channel on the right side, reversed flow between, different water stages across EWR cross-section. No working gauging weirs, presence of crocodiles and hippos make measurement of high flows difficult. Reduction in frequency, magnitude and duration of moderate and large floods and severe reduction in low flows and increase in zero flow periods (which inhibits marginal vegetation establishment and therefore prevents active channel stabilisation). Lower riparian zone has a substantial loss cover and abundance along the flood terraces due to the 2000 floods. Stones in current and riffle habitat limited. Crocodiles and hippos present as well as other large terrestrial mammals. Limited historical water quality data.

Table 2.9 Characteristics and view of EWR 7

Site information	Detail	Illustration
EWR site	EWR 7	-
Name	Letaba Bridge	
River	Groot Letaba	
Co-ordinates	S 23.80983 E 31.59081	
MRU	MRU D	
IUA	IUA 11	the state of the s
SQ Reach	B83D-00255	
IEI rating	High (3)	and the second of the second
WRUI rating	High (3)	
Hotspot rating	High (3)	26. 4. 2004 13:00
 EWR site advantages: Uniform flow conditions ov discharges. Bed compose gravels with imbedded larg resulting in reasonably uni function of stage. The dynamics of vegetatio natural. Diverse habitat with a deep during droughts. Good habitat diversity. No major impacts in water 	er a wide range of ed predominantly of sand and ger material (cobbles), form flow resistance as a n change appear to be largely o pool that will act as refugia quality in the KNP.	 EWR site disadvantages: Mobile bed material results in changes to the channel morphology over time. Difficult to measure medium to high flows using manual flow gauging due to the wide channel. A small riffle feature (containing gravels) is a temporary feature and becomes drowned-out at low flows. Reduction in frequency, magnitude and duration of moderate and large floods and severe reduction in low flows and increase in zero flow periods. The lower riparian zone has a substantial loss of cover and abundance along the flood terraces due to the 2000 floods. Flow pattern changes have resulted in encroachment into the lower riparian zone. Stones in current and riffle habitat limited. Limited historical water quality data. Crocodiles and hippos present as well as other large terrestrial mammals.

3 ECOCLASSIFICATION RESULTS AT EWR SITES

A summary of the EcoClassification results (DWAF, 2006b) are provided in Appendix A. The current suite of EcoClassification models (Kleynhans and Louw, 2007) were not available during 2004 when the EcoClassification results were generated. The updated EcoStatus models (Kleynhans and Louw, 2007) were populated with the 2004 data, the PESEIS 2011 data (DWA 2013b) (referred to as PES (11)) and any additional data that may be readily available. The information is summarised in Table 3.1 to Table 3.6. Most of the changes from 2004 to 2013 are due to new or updated EcoStatus models that do not necessarily indicate a change in PES. <u>Table 3.8</u>Table 3.7 illustrates the PES EcoStatus for 2004 (Level IV), 2011 (desktop level) and 2013 (Level IV). <u>Table 3.7</u>Table 3.8 shows a summary table for the 2013 PES which is the data used for scenario evaluation.

3.1 EWR 1 APPEL PES

Component	PES (04)	PES (13)	Comment
Physico chemical	В	В	2004 assessment data was converted to populate the Physico- chemical Driver Assessment Index (PAI) model.
Geomorphology	C/D	C/D	No EC change.
Fish	С	С	Estimated to be in a lower C due to esp. impact of alien predatory species and flow modification. PES (11): Instream = C.
Invertebrates	C/D	С	Slight increase – potentially related to better water quality.
Riparian vegetation	С	С	 Channel has narrowed and vegetation encroached, likely due to reduced low flows and mostly an expansion of marginal and lower zone vegetation. Marginal and lower zone vegetation were scoured by 2000 floods. Invasion by alien vegetation was high, especially Arundo donax and forestry species. Impacts due to forestry were "Serious". Vegetation removal was "Moderate".
EcoStatus	С	С	The updated EcoStatus model resulted in the same EcoStatus category.

Table 3.1 EWR 1: PES using the updated EcoStatus suite of models

3.2 EWR 3 PRIESKA PES

Table 3.2 EWR 3: PES using the updated EcoStatus suite of models

Component	PES (04)	PES (13)	Comment
Physico chemical	С	B/C	2004 assessment data was converted to populate the PAI model. Changes were due to different model applications.
Geomorphology	C (63%)	D (56%)	The new Geomorphological Driver Assessment Index (GAI) model scores reduced sediment supply and reduced flood flows more severely than the previous model, hence the change in EC. The D EC is a more accurate representation of the geomorphology of this reach.
Fish	С	С	Desktop PES (11): Instream = D. Fish however estimated to be in similar condition as described in 2004, except for Barbus eutaenia possibly still being present (sampled in upstream reach in 2012/3).
Invertebrates	D	С	Increase of PES score due to refinement of the Macro Invertebrate Response Assessment Index (MIRAI).
Riparian vegetation	D	C/D	 Channel has narrowed and vegetation encroached, likely due to reduced low flows and moderate floods. Marginal and lower zone vegetation were scoured by 2000 floods. Woody bank species notably reduced by agricultural encroachment. Vegetation removal was "Moderate".
EcoStatus	C/D	С	The updated EcoStatus models for all components resulted in

Component	PES (04)	PES (13)	Comment
			different categories therefore resulting in a different EcoStatus category.

3.3 EWR 4 LETABA RANCH PES

Table 3.3 EWR 4: PES using the updated EcoStatus suite of models

Component	PES (04)	PES (13)	Comment
Physico chemical	B/C-C	B/C	2004 assessment data was converted to populate the PAI model.
Geomorphology	C/D (61%)	C/D (59%)	No EC change.
Fish	C (67.81%)	C (67.81%)	Desktop PES (11): Instream = C.
Invertebrates	D (55.3%)	C (63.3%)	Increase of PES score due to refinement of the MIRAI - less emphasis on bedrock habitats and very high flows. Lower South African Scoring System (SASS) scores, but Average Score Per Taxon (ASPT) scores similar to natural conditions.
Riparian vegetation	D	С	 Dynamic reach with notable vegetation changes over time. Channel has narrowed, likely due to reduced low flows and moderate floods. Mostly an expansion of marginal and lower zone vegetation, upper zone vegetation has been stable over time. Lower zone vegetation cover notably reduced. Woody bank species composition and structure close to reference.
EcoStatus	C/D	С	The updated EcoStatus models for all components resulted in different categories therefore resulting in a different EcoStatus category.

3.4 EWR 7 LETABA BRIDGE PES

Table 3.4 EWR 7: PES using the updated EcoStatus suite of models

Component	PES (04)	PES (13)	Comment
Physico chemical	B - C	В	2004 assessment data was converted to populate the PAI model.
Geomorphology	C (77%)	C (66%)	No EC change, but the new GAI model scores reduced sediment supply and reduced flood flows more severely than the previous model, hence the reduced score.
Fish	C (69.09%)	C (65.07%)	Desktop PES (11): Instream = C.
Invertebrates	D (53.6%)	C (67.1%)	Increase of PES score due to refinement of the MIRAI - less emphasis on bedrock habitats and very high flows. Lower SASS scores, but higher ASPT scores relating to natural conditions.
Riparian vegetation	С	С	 Stable reach with small vegetation changes over time. Reduced low flows and moderate floods. Lower zone vegetation cover notably reduced. Woody bank species composition and structure close to reference. Species richness and composition close to reference.
EcoStatus	С	С	Although there were minor changes in some of the components, the EcoStatus remained in a C EC.

3.5 EWR 2 LETSITELE PES

Table 3.5 EWR 2: PES using the updated EcoStatus suite of models

Component	PES (04)	PES (13)	Comment
Physico chemical	C/D - D	С	2004 assessment data was used to populate the PAI model; integrated water quality was 72.4% (C category). A check was run using Water Management System (WMS) data up to 2013; to ensure that the same category would be attained. Although the category is still a C, an adjustment was made to 69.0%.

Component	PES (04)	PES (13)	Comment
Geomorphology	D/E	D	The new GAI model scores reduced sediment supply and reduced flood flows more severely than the previous model, and down weights riparian vegetation condition and morphological dynamics relative to the old model. These differences in weighting, and refined data availability (PES (11) data suggests moderate impacts only), account for the change in EC.
Fish	С	C/D	Water quality potentially deteriorated. Desktop PES (11): Instream = D.
Invertebrates	D (48.1%)	C (63.8%)	Increase of PES score due to refinement of the MIRAI - habitat evaluated - better than initial assessment.
Riparian vegetation	D/E	D	 Channel has narrowed and vegetation encroached, likely due to reduced low flows and mostly an expansion of marginal and lower zone vegetation. Marginal and lower zone vegetation were scoured by 2000 floods. Woody bank species dominated by a few large individuals with an absence of recruitment and younger individuals. Vegetation clearing evident. Invasion by alien vegetation was "Large". Channel remains narrowed and encroached and impacted by urbanisation.
EcoStatus	D	D	Although there were changes in some of the components, the EcoStatus remained in a D EC.

3.6 EWR 5 KLEIN LETABA PES

Table 3.6	EWR 5: PES using the updated EcoStatus suite of models
-----------	--

Component	PES (04)	PES (13)	Comment
Physico chemical	B/C - C	B/C	2004 assessment data was used to populate the PAI model; integrated water quality was 77.6% (B/C category). A check was run using WMS data up to 2013; to ensure that the same category would be attained.
Geomorphology	C (63%)	C (60%)	No EC change, but the new GAI model scores reduced sediment supply and reduced flood flows more severely than the previous model, hence the reduced score.
Fish	С	С	Slightly lower in category based on expected present status of fish assemblage. Desktop PES (11): Instream = D.
Invertebrates	D	C/D	Increase of PES score due to refinement of the MIRAI - habitat evaluated - better than initial assessment.
Riparian vegetation	B/C	С	 Channel has narrowed, likely due to reduced low flows and moderate floods. Mostly an expansion of marginal and lower zone vegetation, upper zone vegetation has been stable over time. Lower zone vegetation cover notably reduced. Woody bank species composition and structure close to reference with some targeted woody removal. Marginal and lower zone vegetation scoured by 2000 floods Alien tree invasion small.
EcoStatus	С	С	Although there were changes in some of the components, the EcoStatus remained in a C EC.

3.7 PES ECOSTATUS SUMMARY (2004, 2011, 2013)

The table below compares the PES EcoStatus determined during the different studies.

Table 3.7	Comparison of PES EcoStatus
-----------	-----------------------------

EWR sites	PES (04)	PES (11)	PES (13)
EWR 1	С	С	С
EWR 3	C/D	С	С
EWR 4	C/D	С	С

Classification & RQO: Letaba Catchment

EWR 7	С	С	С
EWR 2	D	D	D
EWR 5	С	D	С

Table 3.8 Summary of 2013 PES (Level IV) results

Component	EWR 1	EWR 3	EWR 4	EWR 7	EWR 2	EWR 5
Physico chemical	В	B/C	B/C	В	С	B/C
Geomorphology	C/D	D	C/D	С	D	C/D
Fish	С	С	С	С	C/D	С
Invertebrates	С	С	С	С	С	C/D
Riparian vegetation	С	C/D	С	С	D	С
EcoStatus	С	С	С	С	D	С

4 EWR RESULTS AT EWR SITES

4.1 2006 EWR RESULTS

As indicated in the inception report, the EWRs undertaken during 2004 (DWAF, 2006b) were not stored in the SPATSIM format and it will therefore not be possible to use the results for scenario evaluation. Furthermore, the hydrology has changed therefore the EWR rules will have to be recreated using the new hydrology as well as accommodating some of the basic changes in methods since 2006. The basic requirements for setting flows during the 2006 study were extracted from the report (DWAF, 2006b) and were used as a guideline for recreating flows. These results are summarised in Appendix B of this report.

The major changes in the results were due to the change in present day (PD) hydrology. When determining the EWRs to maintain the PES, the EWRs should not be higher than the present day flow as that would generally imply an improvement. Therefore, wherever the 2006 EWRs were higher than present day hydrology, adjustments were required.

4.2 REVISION OF EWR RESULTS

The results were generated using the measured hydraulic cross-sections and hydraulic modelling at EWR sites where the raw hydraulic cross-sectional data was available. These results and the updated hydrology were used to populate the Revised Desktop Reserve Model (RDRM) (Hughes et al., 2012) in SPATSIM. The model output for every EWR site is attached as Appendix C. The results for the low flows are provided below per EWR site (Table 4.1 to Table 4.6) and the high flows are summarised in Table 4.7 for all the EWR sites. Note that the high flows (floods) were not adjusted and were added to the revised low EWR flows. A summary of the results compared to the natural MAR (NMAR) is provided in Table 4.8. Note that EWR 6 was not used in the revision of EWRs as it is in the same RU as EWR 7 and the results at EWR 7 are of higher confidence than EWR 6.

Months	Drought flows: 90% (m³/s)	Maintenance flows: 70% (m ³ /s)
OCTOBER	0.116	0.141
NOVEMBER	0.115	0.149
DECEMBER	0.130	0.170
JANUARY	0.149	0.211
FEBRUARY	0.158	0.244
MARCH	0.182	0.263
APRIL	0.178	0.278
MAY	0.179	0.265
JUNE	0.173	0.257
JULY	0.169	0.235
AUGUST	0.152	0.203
SEPTEMBER	0.126	0.162

Table 4.1 EWR 1 Appel: Low flow EWR results for PES: C

Table 4.2 EWR 2 Letsitele Tank: Low flow EWR results for PES: C

Months	Drought flows: 90% (m³/s)	Maintenance flows: 60% (m ³ /s)
OCTOBER	0.055	0.114
NOVEMBER	0.063	0.172
DECEMBER	0.101	0.279
JANUARY	0.150	0.456
FEBRUARY	0.179	0.497
MARCH	0.200	0.571
APRIL	0.160	0.490
MAY	0.183	0.479
JUNE	0.142	0.353
JULY	0.115	0.236
AUGUST	0.087	0.177
SEPTEMBER	0.069	0.129

Table 4.3EWR 3 Prieska: Low flow EWR results for PES (C) and REC (B/C)

		PES	REC		
Months	Drought flows: 90% (m³/s)	Maintenance flows: 60% (m ³ /s)	Drought flows: 90% (m³/s)	Maintenance flows: 60% (m ³ /s)	
OCTOBER	0.139	0.201	0.168	0.232	
NOVEMBER	0.145	0.238	0.175	0.272	
DECEMBER	0.166	0.345	0.198	0.385	
JANUARY	0.195	0.455	0.231	0.500	
FEBRUARY	0.206	0.620	0.243	0.672	
MARCH	0.215	0.724	0.252	0.780	
APRIL	0.223	0.703	0.262	0.758	
ΜΑΥ	0.216	0.656	0.254	0.709	
JUNE	0.204	0.552	0.240	0.601	
JULY	0.194	0.440	0.229	0.484	
AUGUST	0.173	0.322	0.206	0.361	
SEPTEMBER	0.149	0.238	0.179	0.272	

Table 4.4 EWR 4 Letaba Ranch: Low flow EWR results for PES (C) and REC (B/C)

	I	PES	REC			
Months	Drought flows: 90% (m³/s)	Maintenance flows: 60% (m ³ /s)	Drought flows: 90% (m ³ /s)	Maintenance flows: 60% (m ³ /s)		
OCTOBER	0.042	0.192	0.223	0.525		
NOVEMBER	0.046	0.211	0.228	0.564		
DECEMBER	0.060	0.262	0.236	0.657		
JANUARY	0.080	0.305	0.230	0.727		
FEBRUARY	0.087	0.368	0.228	0.818		
MARCH	0.096	0.410	0.209	0.875		
APRIL	0.092	0.401	0.253	0.872		
ΜΑΥ	0.093	0.378	0.224	0.836		
JUNE	0.085	0.340	0.226	0.781		
JULY	0.077	0.296	0.232	0.714		
AUGUST	0.062	0.249	0.236	0.633		
SEPTEMBER	0.048	0.211	0.230	0.563		

Table 4.5 EWR 5 Klein Letaba: Low flow EWR results for PES: C

Months	Drought flows: 90% (m³/s)	Maintenance flows: 60% (m ³ /s)		
OCTOBER	0.022	0.038		
NOVEMBER	0.030	0.047		
DECEMBER	0.036	0.056		
JANUARY	0.036	0.074		
FEBRUARY	0.041	0.088		
MARCH	0.047	0.085		
APRIL	0.043	0.079		
MAY	0.040	0.068		
JUNE	0.039	0.064		
JULY	0.042	0.061		
AUGUST	0.039	0.054		
SEPTEMBER	0.033	0.045		

Table 4.6 EWR 7 Letaba Bridge: Low flow EWR results for PES (B/C) and REC (B)

Months		PES	REC			
	Drought flows: 90% (m³/s)	Maintenance flows: 60% (m ³ /s)	Drought flows: 90% (m ³ /s)	Maintenance flows: 60% (m ³ /s)		
OCTOBER	0.566	0.598	0.610	0.643		
NOVEMBER	0.586	0.696	0.634	0.748		
DECEMBER	0.662	0.951	0.723	1.018		
JANUARY	0.755	1.299	0.837	1.386		
FEBRUARY	0.805	1.473	0.890	1.570		
MARCH	0.861	1.572	0.948	1.675		
APRIL	0.786	1.662	0.880	1.769		
ΜΑΥ	0.781	1.478	0.871	1.576		
JUNE	0.752	1.221	0.833	1.304		
JULY	0.722	1.022	0.796	1.092		
AUGUST	0.675	0.840	0.739	0.900		
SEPTEMBER	0.598	0.685	0.649	0.735		

Table 4.7High flow EWR results the EWR sites

Flood Class (m ³ /s)	Macro- invertebrates	Fish	Vegetation	Geomorphology	FINAL ¹	Months	Daily average (m³/s)	Duration (days)	
EWR 1: APPEL PES: C ECOSTATUS									
CLASS I (1.2 - 2.5 m³/s)		12			2	Mar, Nov	2	2	
CLASS II (2 - 5 m³/s)	2			6	6	Nov, Dec, Jan, Feb, Mar	3.5	3	
CLASS III (4.5 - 10.5 m³/s)		1	1	2	2	Dec, Apr	8	4	
CLASS IV (20 - 28 m³/s)			1	1:2	1	Feb	20	6	
EWR 3 PRIESKA PES ECOSTATUS									
CLASS I (6 - 10 m³/s)	6	6			6	Nov, Dec, Jan, Feb, Mar, Apr	7	2	
CLASS II (12 - 18 m³/s)	2	1	3		3	Dec, Jan Mar	14	3	
CLASS III (50 - 90 m³/s)			1		1	Feb	70	4	

Flood Class (m³/s) CLASS IV (150 - 220 m³/s) *Included as a flood of 6 days	Macro- invertebrates	Fish	Acceleration	Ceomorphology 1:2	FINAL ¹ 1:2*	Months Mar	Daily average (m³/s)	Duration (days)		
EWR 3 PRIESKA REC ECOSTATUS C										
CLASS I (6 - 10 m³/s)		8	8		8	Mar, Apr	7	2		
CLASS II (12 - 18 m³/s)	3	1	3		3	Dec, Jan Mar	14	3		
CLASS III (50 - 90 m³/s)		1	1		1	Feb	70	4		
CLASS IV (150 - 220 m³/s)			1:2	1:2	1:2	Mar	160	6		
	E	EWR 4: I	LETABA		I PES ECOS	STATUS				
CLASS I (4 - 8 m³/s)		5			5	Jan, Mar, Apr, Nov, Dec	6	3		
CLASS II (10 - 22 m³/s)	2	1	4		4	Jan, Apr, Nov, Dec	15	4		
CLASS III (60 - 180 m³/s)			1	1	1	Mar	60	6		
CLASS IV (250 - 420 m³/s)			1	1:2	1	Feb	150	6		
CLASS V (650 - 1000 m³/s			1:10		1:10					
	E	EWR 4: L	ETABA	RANCH	REC ECOS	STATUS				
CLASS I (4 - 8 m³/s)		7			4	Jan, Apr, Nov, Dec	6	3		
CLASS II (10 - 22 m³/s)	3	1	6		6	Jan, Apr, Nov, Dec	15	4		
CLASS III (60 - 180 m³/s)			2	1	2	Dec, Jan	60	6		
CLASS IV (250 - 420 m³/s)			2	1:2	2	Feb, Mar	150	6		
	EWR 5	5: KLEIN	I LETAB	A PES A	AND REC EC	COSTATUS C				
CLASS I (8 - 12 m³/s)	3	1	6		6	Nov, Dec, Jan, Feb, Mar, Apr	8	2		
CLASS II (14 - 25 m³/s)		2	3	2	3	Nov, Feb, Apr	12	3		
CLASS III (60 - 126 m³/s)			1	1:2	1	Mar	60	4		
CLASS IV (175 - 480 m³/s)			1:10		1:10		150	5		
EWR 7: LETABA BRIDGE PES ECOSTATUS C										
CLASS I (5 - 8 m³/s)		7			5	3x[Dec], Jan, Apr	6	3		
CLASS II (10 - 30 m³/s)	2	2	5	3	5	Oct, Nov, Dec, Jan, Apr	15	4		
CLASS III (80 - 160 m³/s)			2*	1	2	Feb	120	6		
CLASS IV (300 - 550 m³/s)			1*	1:?	1	Feb		8		
* This only happened twice a year in four years in a twenty year record - therefore only one was allocated.										
EWR 7: LETABA BRIDGE REC ECOSTATUS C										
CLASS I (5 - 8 m ³ /s) 8 2 6 3										
CLASS II (10 - 30 m³/s)	3	2	6	4	6		15	4		
CLASS III (80 - 160 m³/s)			3	1	1		120	6		
CLASS IV (300 - 550 m ³ /s)			1	1:2	1:5			8		

1 * Final refers to the agreed on number of events considering the individual requirements for each component.
						Long te	rm mean		
EWR site	PES	nMAR (MCM)	pMAR (MCM)	Low flows (MCM)	Low flows (%nMAR)	High flows (MCM)	High flows (%nMAR)	Total flows (MCM)	Total (%nMAR)
EWR 1	С	99.84	53.1	10.807	10.8	9.2	9.215	19.998	20
EWR 2	С	116.55	76.42	17.865	15.3	9.799	8.4	27.664	23.7
EWR 3	С	394.91	181.98	23.72	6	22.235	5.6	45.955	11.6
EWR 4	D	441.39	217.92	52.057	11.8	56.547	12.8	108.604	24.6
EWR 5	С	124.18	67.08	4.831	3.9	15.036	12.1	19.867	16
EWR 7	B/C	646.28	360.69	47.772	7.4	60.983	9.4	108.755	16.8

Table 4.8 Summary of PES results as a percentage of the natural MAR (nMAR)

Table 4.9 Summary of REC results as a percentage of the natural MAR (nMAR)

						Long te	rm mean		
EWR site	REC	nMAR (MCM)	pMAR (MCM)	Low flows (MCM)	Low flows (%nMAR)	High flows (MCM)	High flows (%nMAR)	Total flows (MCM)	Total (%nMAR)
EWR 3	B/C	394.91	181.98	31.544	8	27.04	6.8	58.584	14.8
EWR 4	B/C	441.39	217.92	39.887	9	44.857	10.2	84.744	19.2
EWR 7	В	646.28	360.69	50.173	7.8	65.165	10	115.338	17.8

4.3 EXTRAPOLATED EWRS

Additional to the six EWR sites, 18 biophysical nodes will have a flow requirement which is extrapolated from the EWR at the EWR sites. The EWR sites and its requirements therefore act as surrogates for these nodes. Therefore, if the system is managed for the EWR sites, these 18 biophysical nodes will be catered for. The nodes are listed in Table 4.10 and due to the higher confidence than desktop level, these nodes are also key biophysical nodes.

Table 4.10Biophysical nodes

Node name	River	Extrapolated from
B81B-00247	Great Letaba	EWR 1
EWR 1	Great Letaba	
B81C-00245	Great Letaba	EWR 3
EWR 2	Letsitele	
B81E-00244	Great Letaba	EWR 3
EWR 3	Great Letaba	
B81F-00212	Great Letaba	EWR 3/4
B81F-00215	Great Letaba	EWR 3/4
B81F-00218	Great Letaba	EWR 3/4
B81F-00231	Great Letaba	EWR 3/4
B81J-00209	Great Letaba	EWR 4
EWR 4	Great Letaba	
EWR 5	Little Letaba	
B82J-00165	Little Letaba	EWR 5
B82J-00178	Little Letaba	EWR 5
B82J-00201	Little Letaba	EWR 5

Classification & RQO: Letaba Catchment

Node name	River	Extrapolated from
B82J-00207	Little Letaba	EWR 5
B83A-00220	Letaba	EWR 4/7
B83A-00230	Letaba	EWR 7
EWR 6	Letaba	EWR 7
B83A-00252	Letaba	EWR 7
B83D-00250	Letaba	EWR 7
EWR 7	Letaba	
B83E-00265	Letaba	EWR 7

5 DESKTOP BIOPHYSICAL NODES: RESOURCE UNITS, LOCALITY AND ECOCLASSIFICATION

5.1 DESKTOP RESOURCE UNITS

The Sub-Quaternary river reaches (SQs) as indicated in http://www.dwa.gov.za/iwqs/gis_data /river/rivs500k.html and http://www.dwa.gov.za/iwqs/gis_data/river/River_Report_01.pdf, forms the basis of the PES (11) (DWA 2013b) assessment. A SQ changes when a significant tributary joins it. This means that a SQ may potentially be subdivided into various EcoRegions, geomorphic zones (slope zones) resource units (natural or management), etc. Such subdivisions are not addressed on a desktop level, and may be required when higher confidence assessments are done. The version of the 1:500 000 coverage that was used for the PES (11) (DWA, 2013b), was a version used by the National Freshwater Ecosystem Priority Areas (NFEPA) project in 2009 (Nel et al., 2011).

The SQs at desktop levels are therefore surrogates for desktop level Resource Units. These SQs are illustrated in Figure 2.1.

5.2 DESKTOP BIOPHYSICAL NODES

A desktop biophysical node represents a point at the end of the SQ for all SQs which do not contain key biophysical nodes. These desktop biophysical nodes are represented in Figure 2.1. A table with all the nodes and their coordinates, as well as providing the IUA in which they are situated, are provided in Table 5.1. The red font in the first column represents key biophysical nodes.

SQ/Node Number	Latitude	Longitude	IUA
B81A-00242	-23.894766	29.929583	IUA 1
B81A-00256	-23.931493	29.986368	IUA 1
B81A-00263	-23.895447	29.926083	IUA 1
B81A-00270	-23.936362	29.980707	IUA 1
B81B-00233	-23.750399	30.078479	IUA 1
B81B-00234	-23.753964	30.075103	IUA 1
B81B-00246	-23.80922	30.083294	IUA 1
B81B-00251	-23.810231	30.084098	IUA 1
B81B-00269	-23.875012	30.088541	IUA 1
B81B-00227	-23.752474	30.087183	IUA 1
B81B-00240	-23.794011	30.102626	IUA 1
B81B-00247	-23.855169	30.103565	IUA 1
EWR 1	-23.91769	30.05083	IUA 1
B81D-00277	-23.903248	30.342586	IUA 2
B81D-00280	-23.976655	30.148145	IUA 2
B81D-00296	-23.980357	30.148578	IUA 2
EWR 2	-23.88806	30.36125	IUA 2
B81D-00272	-23.896817	30.340316	IUA 2

Table 5.1 List of all nodes and coordinates

SQ/Node Number	Latitude	Longitude	IUA
B81C-00245	-23.881822	30.368689	IUA 3
B81E-00213	-23.755704	30.484794	IUA 3
B81E-00244	-23.759511	30.490076	IUA 3
EWR 3	-23.64939	30.66064	IUA 4
B81F-00212	-23.690558	30.842038	IUA 4
B81F-00215	-23.676692	30.920789	IUA 4
B81F-00218	-23.660284	30.629575	IUA 4
B81F-00231	-23.694532	30.592761	IUA 4
B81J-00209	-23.645784	31.06698	IUA 4
EWR 4	-23.67753	31.09864	IUA 4
B81F-00228	-23.70647	30.760409	IUA 5
B81F-00232	-23.692646	30.844333	IUA 5
B81F-00189	-23.656814	30.631966	IUA 6
B81F-00203	-23.690531	30.592164	IUA 6
B81G-00164	-23.441665	30.568091	IUA 6
B81H-00162	-23.433379	30.57215	IUA 6
B81H-00171	-23.674791	30.920013	IUA 6
B81J-00187	-23.638615	31.070883	IUA 6
B82A-00168	-23.396494	30.209032	IUA 7
B82B-00173	-23.444787	30.264024	IUA 7
B82C-00175	-23.444665	30.268783	IUA 7
B82D-00163	-23.393984	30.203419	IUA 7
B82D-00154	-23.373329	30.324541	IUA 7
B82D-00166	-23.379501	30.32529	IUA 7
B82D-00146	-23.250322	30.444398	IUA 7
B82E-00149	-23.286323	29.9532	IUA 8
B82E-00150	-23.286945	29.956688	IUA 8
B82F-00141	-23.226716	30.18857	IUA 8
B82F-00128	-23.245214	30.44833	IUA 8
B82F-00137	-23.224625	30.187538	IUA 8
EWR 5	-23.25081	30.49572	IUA 9
B82J-00165	-23.56419	31.122732	IUA 9
B82J-00178	-23.483144	31.009724	IUA 9
B82J-00201	-23.642554	31.138075	IUA 9
B82J-00207	-23.588957	31.101152	IUA 9
B82H-00127	-23.347941	30.906261	IUA 10
B82H-00139	-23.346229	30.907711	IUA 10
B82H-00157	-23.43102	30.996622	IUA 10
B82J-00153	-23.482271	31.016436	IUA 10
B82J-00159	-23.565796	31.127522	IUA 10

Classification & RQO: Letaba Catchment

SQ/Node Number	Latitude	Longitude	IUA
B82J-00197	-23.595182	31.097251	IUA 10
B83A-00220	-23.699633	31.213023	IUA 11
B83A-00230	-23.747566	31.358652	IUA 11
EWR 6	-23.75264	31.40731	IUA 11
B83A-00252	-23.755554	31.36645	IUA 11
B83D-00250	-23.796087	31.569096	IUA 11
EWR 7	-23.80983	31.59081	IUA 11
B83E-00265	-23.988813	31.825606	IUA 11
B83A-00193	-23.749066	31.366869	IUA 12
B83A-00238	-23.704821	31.21554	IUA 12
B83A-00254	-23.759709	31.36382	IUA 12
B83B-00161	-23.773025	31.543311	IUA 12
B83D-00204	-23.687242	31.62259	IUA 12
B83D-00208	-23.687503	31.625239	IUA 12
B83D-00261	-23.806724	31.566234	IUA 12
B83D-00236	-23.828386	31.630159	IUA 12

5.3 DESKTOP ECOCLASSIFICATION

The PES (11) (DWA, 2013b) results were used to derive the Recommended Ecological Category (REC) (Table 5.2) at the desktop biophysical nodes. In cases where the importance (IEI - Integrated Environmental Importance) is high or very high, an improved REC is recommended. The estimated EWR from the RDRM is linked to the REC and these results are provided in the following chapters. It must however be noted that if the REC is not based on an improved flow regime, the EWR for the PES is used. Information is also supplied on what will be required to achieve the REC as well as whether this is attainable (Column 6 and 7 in Table 5.2.).

Table 5.2 summarises the results for the desktop biophysical nodes (DWA, 2013a) and forms the basis for the EWR estimation (see Chapter 6 and 7). Note that biophysical nodes which fall in it totality in the Kruger National Park or other protected areas are not included for EWR estimation and are excluded from the table below. If information is required on any of these nodes, please refer to DWA (2013a).

Node name	River	PES (EC)	IEI	REC	REC Comment	Improvement attainable?	RDRM
B81A-00242	Broederstroom	С	3	В	The EIS is high and warrants improvement to a B. This would require better management of forestry especially in the riparian zone, i.e. non-flow related mitigation.	Yes.	С
B81A-00256		D	3	D			D
B81A-00263		D	2	D			D
B81A-00270	Broederstroom	С	5	С			С

Table 5.2	Summary of results for the desktop biophysical ne	odes
-----------	---	------

Node name	River	PES (EC)	IEI	REC	REC Comment	Improvement attainable?	RDRM
B81B-00233	Mahitse	С	4	С			С
B81B-00234	Mahitse	С	3	С			С
B81B-00246	Politsi	С	5	С			С
B81B-00251		D	2	D			D
B81B-00269	Morudi	В	5	В			В
B81B-00227	Mahitse	D	3	D			D
B81B-00240	Politsi	С	3	С			С
B81D-00277	Thabina	D	3	D			D
B81D-00280	Bobs	В	5	В			В
B81D-00296	Mothlaka- Semeetse	В	5	В			В
B81D-00272	Letsitele	С	5	С			С
B81E-00213	Nwanedzi	D	3	С	Flow is mostly from abstractions, small farm dams etc. Improvement will require catchment management and operation of the system through restrictions at times. Irrigation return flows and urban runoff must be managed and this might improve water quality. Success probably dependant on addressing other non-flow related aspects as well.	Yes.	С
B81F-00189	Merekome	С	3	С			С
B81F-00203	Lerwatlou	С	3	С			С
B81F-00228	Reshwele	В	4	В			В
B81F-00232	Makwena	В	4	В			В
B81G-00164	Molototsi	D	2	D			D
B81H-00162	Metsemola	С	3	С			С
B81H-00171	Molototsi	D	2	D			D
B81J-00187	Mbhawula	С	3	С			С
B82A-00168	Middel Letaba	С	3	С			С
B82B-00173	Koedoes	D	2	D			D
B82C-00175	Brandboontjies	E	3	D	To improve this to a D, some dams have to be removed, erosion as to be adjusted and water quality from irrigation return flows and urban areas to be addressed.	No, but as one cannot set flows for an E (as deemed unsustainable), the REC must be a D.	
B82D-00163	Lebjelebore	С	3	С			С
B82D-00154	Middel Letaba	D	2	D			D
B82D-00166	Mosukodutsi	D	2	D			D
B82E-00149	Khwali	В	5	В			В
B82E-00150	Little Letaba	С	3	С			С
B82F-00141	Soeketse	С	3	С			С
B82F-00128	Little Letaba	С	3	С			С
B82F-00137	Little Letaba	D	2	D			D
B82H-00127	Nsama	С	3	С			С

Node name	River	PES (EC)	IEI	REC	REC Comment	Improvement attainable?	RDRM
B82H-00139	Magobe	В	4	В			В
B82H-00157	Nsama	В	4	В			В
B82J-00197	Ka-Malilibone	В	4	В			В

6 DESKTOP BIOPHYSICAL NODES: APPROACH TO ESTIMATING EWRS AND RESULTS

6.1 BACKGROUND

The Desktop Reserve Model (DRM) of Hughes and Hannart (2003) has been extensively used over the last decade for estimating EWRs in this and other countries. The estimation of EWRs in this study makes use of a RDRM, that more explicitly includes the links and relationships between hydrology, hydraulics and ecological response. The RDRM was developed under a Water Research Commission (WRC) project, and is documented in Hughes et al. (2012) and Hughes et al. (in press).

6.2 APPROACH

6.2.1 Biophysical nodes and associated information provided

The SQ catchments requiring Desktop EWR assessments were provided by Rivers for Africa, together with the PES and REC. So-called 'biophysical nodes' are located at the SQ catchment outlets, and of the 38 nodes requiring Desktop EWRs, only one node¹ has an improved REC relative to the PES. The SQs are labelled according to their quaternary and NFEPA² codes. Also provided (of relevance to Desktop EWR estimation) included a broad assessment of the relative importance of the fundamental drivers³ that influence the overall SQ PES, and the numerical rating⁴ for flow modification activities. The PES, relative assessment of driver impacts, and rating of flow modification activities are from the national desktop Present Ecological Status, Ecological Importance and Ecological Sensitivity (DWA, 2013b).

6.2.2 SPATSIM setup

THE RDRM runs within the Spatial and Time Series Information Modelling (SPATSIM) software. A new SPATSIM application was setup for the Letaba River catchment, with Geographical Information System (GIS) coverages for the SQ catchments, rivers, major dams, biophysical nodes and EWR sites (refer to Figure 6.1). In Figure 6.1 the SQ catchments associated with biophysical nodes (requiring Desktop EWRs) are outlined darker (and labelled using the NFEPA numerical codes), and nodes are located at catchment outlets.

In this SPATSIM application, the biophysical nodes are labelled using the NFEPA code unique to each SQ catchment. For example, biophysical node B81A-00242 is labelled 242. The RDRM application setup is readily transferable to other computers running SPATSIM.

4 Scale 0 to 5 for change from reference, where 0 is none, 3 is moderate and 5 is critical.

¹ B81E-00213.

² National Freshwater Ecosystem Priority Areas Project (http://bgis.sanbi.org/nfepa/project.asp). The numerical NFEPA codes are unique to each SQ at a national level.

³ Including hydrological (i.e. flow-related), water quality, and non-flow related impacts.

Figure 6.1 The Letaba River Catchment Classification Project visual setup in SPATSIM, showing the SQ catchments, rivers, major dams, biophysical nodes (light red) and EWR sites (yellow).

6.2.3 Data requirements and assessment

The RDRM, run as a Desktop Application⁵, has the following minimum data requirements:

- Hydrology⁶
 - Timeseries of monthly natural flows.
 - o Baseflow separation parameters (refer to Hughes et al., 2002).
 - Percentage point on the low flow-temporal exceedance for the maximum low flow.
- Hydraulics
 - Flood region.
 - Valley slope.
 - Geomorphological zone (Gz).
 - o Catchment area.
- Ecology
 - Seasonal perenniality, viz. whether the EWR should have wet, wet and dry, or neither seasons perennial.
 - The stress index value (in the range 0 to 10) corresponding to the threshold discharge for the onset of fast flows (i.e. velocities ≥ 0.3 m/s).
 - The relative weighting of stress index-discharges for three velocity-depth classes (viz. fast-shallow, fast-intermediate, and fast-deep flows refer to Table 6.1).

Default parameter values were used for the following variables:

Hydrology

⁵ It can also be applied at higher levels of Reserve determination (e.g. Rapid III, Intermediate and Comprehensive), with the use of additional information, such as, for example, surveyed cross-sectional river profiles and modelled rating relationships.

⁶ Provided by WRP Consulting Engineers (Pty) Ltd.

- Percentage point (20%) on the low flow-temporal exceedance.
- Regionalised baseflow separation parameters.
- The (three) high flow EWR parameters.
- Ecology
 - The low and high flow stress index shifts (from natural) for the categories (A to D).

In addition to the monthly natural flows, time series of PD flows were also modelled and provided (refer to footnote 6). The remaining parameters required for Desktop assessment were determined as follows:

- Hydraulics
 - Valley slopes were determined using the Shuttle Remote Topography Mission⁷ (SRTM) 90m Digital Elevation Model (DEM). The 1;500000 rivers coverage published by the Department of Water Affairs (DWA)⁸ was re-digitised for the Letaba River Catchment using the SRTM DEM. The reason for this is to ensure that the rivers coverage corresponds to the lowest elevations in the underlying DEM, which is in-turn used to provide elevations for vertices along the river lines, and hence valley slopes. The national 25 m DEM (available from National Geo-Spatial Information (NGI), Department of Rural Development and Land Reform) was investigated, but there were data gaps in the coverage. The SRTM DEM was pre-processed⁹ and drainage lines (corresponding in position to the 1:500,000 DWA rivers coverage) were digitised for the sqs requiring Desktop EWR estimation. Valley slopes were computed¹⁰ for the rivers coverage, and due to the resolution of the underlying DEM, average slopes^{11, 12} were computed upstream of the SQ catchment outlets.
 - The classified Gzs8 at a national level are derived directly from valley slopes, and are subject to the resolution issues associated with the 1:500,000 rivers coverage-DEM, discussed above. The GZs corresponding to the 2 km-averaged valley slopes (at the SQ catchment outlets) were determined using the gradient-Gz classification of Rountree and Wadeson (1999)¹³.
- Ecology
 - For each of the SQ catchments (requiring EWR estimates), the fish species present were classified¹⁴ into the presence or absence of six broad guilds which differ in size (small or large) and their preference for fast-flowing water (i.e. Rheophiles, Semi-rheophiles and limnophiles)¹⁵. Stress-index parameter values required in the RDRM were then determined for the six broad fish guilds, and are given in Table 6.1.
 - The need for seasonal perenniality can be inferred from the presence/absence of the fish guilds in Table 6.1. For example, if rheophilics are present, both (wet and dry seasons must be perennial; for semi-rheophilics, the wet season must be perennial; and limnophilics do not require either seasons to be perennial.

⁷ http://www2.jpl.nasa.gov/srtm/

⁸ http://www.dwaf.gov.za/iwqs/gis_data/

⁹ Sinks filled and/or channels deepened

¹⁰ At the (approximately) 90 to 127 m spatial coverage of the SRTM DEM.

¹¹ Over 2km; artificially impounded water bodies were excluded from the average slope calculations, using the DWA (major) dams GIS coverage which was verified and refined using Google Earth imagery.

¹² Dams were excluded from the average slope calculations, using the DWA (major) dams coverage which was verified and refined using Google Earth imagery.

¹³ This results in Gzs in the hydraulic component of the RDRM that are compatible with the valley slopes from which they are derived, and no corrections are necessary.

¹⁴ By Dr P. Kotze.

¹⁵ A rheophile is an organism that requires fast-flowing water, whereas limnophiles do not.

	Wet sease	on ¹ str	ess-in	dex	Dry season ¹ stress-index				
Fish Guild	Fast	Rela	tive w	veight	Fast	Relative weight			
	threshold	FS	FI ²	FD	threshold	FS	FI	FD	
Large rheophylics (LR)	10	1	2	2	10	1	2	2	
Small rheophilics (SR)	10	1	1	1	10	1	1	1	
Large semi-rheophilics (LSR)	9	1	2	2	4	1	1	1	
Small semi-rheophilics (SSR)	9	1	1	1	3	1	1	1	
Large limnophilics (LL)	5	1	1	1	1	1	1	1	
Small limnophilics (SL)	4	1	1	1	1	1	1	1	
None	4	1	1	1	1	1	1	1	

Table 6.1 Stress-index parameter values for fish guilds used in the RDRM

1 Critical period (i.e. month) 2 Fast Intermediate

6.2.4 Modelling

The modelled Present Day (PD) hydrological time series, together with a broad assessment of the relative impacts of the drivers, PES and hydrological modification activity ratings (from the national PES-EIS project – DWA, 2013b) were used to provide an indication of whether the PD hydrology could be meaningfully used to inform the EWR requirements. For all biophysical nodes assessed, the EWR requirements were constrained to PD flows.

For three of the nodes (viz. B81F-00232, B81H-00162 and B82J-00197) the RDRM could not be used¹⁶, and the DRM was applied.

6.3 RESULTS

The EWR results are provided in the following formats as text files named according to the biophysical node:

- Time series of average monthly EWR flows (in 10⁶ m³) for the period 1920 to 2010 (provided electronically).
- Assurance rules for EWR low flows and total flows (in 10^6 m^3) (provided electronically).
- RDRM generated reports (Appendix C).

A summary of low and high flow EWR requirements, including the naturalised and PD MAR is provided in Table 6.2.

	MAR (1	0 ⁶ m ³)		L	ong-term r			
Node	Network		REC	Low	flows	Total	flows	Desktop method
	Naturai	PD		10 ⁶ m ³	%MAR	10 ⁶ m ³	%MAR	
B81A-00242	23.83	15.16	С	3.310	13.9	5.215	21.9	RDRM
B81A-00256	16.34	12.18	D	2.499	15.3	3.573	21.9	RDRM
B81A-00263	5.75	4.00	D	0.867	15.1	1.258	21.9	RDRM
B81A-00270	44.47	29.99	С	8.447	19.0	12.043	27.1	RDRM

Table 6.2 Summary of Desktop EWRs for the biophysical nodes in the Letaba River Catchment

¹⁶ Since the discharge at which fast flow commences is higher than the naturalised baseflow in the wet season. This is a limiting condition for use of the existing version of the RDRM.

MAR (10 ⁶ m ²		0 ⁶ m ³)		L	ong-term r			
Node	Netural	DD	REC	Low	flows	Total	flows	Desktop method
	Naturai	PD		10 ⁶ m ³	%MAR	10 ⁶ m ³	%MAR	
B81B-00227	13.60	10.77	D	2.006	14.8	3.005	22.1	RDRM
B81B-00233	2.69	2.08	С	0.500	18.6	0.738	27.4	RDRM
B81B-00234	10.13	8.06	С	2.150	21.2	3.013	29.8	RDRM
B81B-00240	38.98	22.79	С	4.445	11.4	7.455	19.1	RDRM
B81B-00246	36.26	20.80	С	3.616	10.0	6.406	17.7	RDRM
B81B-00251	1.34	0.98	D	0.094	7.0	0.206	15.4	RDRM
B81B-00269	1.95	1.95	В	0.465	23.9	0.675	34.6	RDRM
B81D-00272	91.27	57.51	С	13.288	14.6	20.084	22.0	RDRM
B81D-00277	25.28	18.90	D	1.053	4.2	3.276	13.0	RDRM
B81D-00280	18.51	13.95	В	3.647	19.7	5.417	29.3	RDRM
B81D-00296	10.53	8.85	В	2.637	25.0	3.645	34.6	RDRM
B81E-00213	17.28	11.31	С	0.302	1.7	1.392	8.1	RDRM
B81F-00189	4.74	4.08	С	0.062	1.3	0.337	7.1	RDRM
B81F-00203	3.74	3.08	С	0.071	1.9	0.328	8.8	RDRM
B81F-00228	3.53	2.87	В	0.030	0.8	0.322	9.1	RDRM
B81F-00232	2.75	2.54	В	0.094	3.4	0.347	12.8	DRM
B81G-00164	16.72	14.30	D	0.072	0.4	1.110	6.6	RDRM
B81H-00162	0.64	0.59	С	0.012	1.9	0.063	9.8	DRM
B81H-00171	25.84	22.60	D	0.254	1.0	1.671	6.5	RDRM
B81J-00187	2.53	2.53	С	0.014	0.5	0.247	9.8	RDRM
B82A-00168	31.12	25.07	С	4.339	13.9	7.564	24.3	RDRM
B82B-00173	23.13	15.76	D	1.377	6.0	2.848	12.3	RDRM
B82D-00154	40.53	32.96	D	3.527	8.7	7.025	17.3	RDRM
B82D-00163	4.90	4.29	С	0.818	16.7	1.261	25.8	RDRM
B82D-00166	42.25	27.77	D	1.776	4.2	4.296	10.2	RDRM
B82E-00149	4.51	4.02	В	0.126	2.8	0.624	13.9	RDRM
B82E-00150	3.48	3.08	С	0.037	1.1	0.558	16.0	RDRM
B82F-00128	32.13	30.26	С	1.595	5.0	4.962	15.4	RDRM
B82F-00137	13.64	12.42	D	0.063	0.5	1.319	9.7	RDRM
B82F-00141	7.32	7.19	С	0.115	1.6	0.935	12.8	RDRM
B82H-00127	6.91	4.42	С	0.067	1.0	0.730	10.6	RDRM
B82H-00139	3.10	3.10	В	0.021	0.7	0.463	14.9	RDRM
B82H-00157	11.72	9.21	В	0.202	1.7	1.683	14.4	RDRM
B82J-00197	0.66	0.64	В	0.023	3.5	0.091	13.8	DRM

7 LINK OF EGSA TO IMPROVED ECOLOGICAL CATEGORY

All biophysical nodes where improvements are required were assessed to determine how the EGSAs will respond to this improvement. The results are summarised below.

7.1 EWR 4

This site is in a nature reserve and as such the utilisation of provisioning services is very limited, however regulating services remain of some importance.

From a geomorphological perspective the REC should result in higher flows, more frequent flushing of riffles and thus an increase in in-stream habitat conditions. This could positively impact the aesthetic qualities of the river and this may have some importance for recreational utilisation. Malaria may be reduced as flows will be increased and as such habitat reduced. This potentially has a positive impact for people in the reserve.

High level of tourism is present in this reach. Acceptable perennial flows are advantageous for eco-tourism regarding the aesthetic qualities. A healthy ecosystem will support a more diverse biota which is also beneficial for tourist experiences.

7.2 EWR 7

This site is in the Kruger National Park and as such the utilisation of provisioning services is very limited, however regulating services remain of some importance.

From a geomorphological perspective the REC should result in higher flows, more frequent flushing of riffles and thus an increase in in-stream habitat conditions. This could positively impact the aesthetic qualities of the river and this may have some importance for recreational utilisation. Malaria may be reduced as flows will be increased and as such habitat reduced. This potentially has a positive impact for people in the reserve.

As a high level of tourism is present in this reach acceptable perennial flows are advantageous for eco-tourism regarding the aesthetic qualities. A healthy ecosystem will support a more diverse biota which is also beneficial for tourist experiences.

7.3 B81A-00242

This is approximately 15 km stretch of river that is exclusively rural, with no towns or villages noted. Near total dominant land-use is formal plantation forestry, including associated infrastructure (buildings, roads and small dams). Recreational utilisation is probably of relatively high importance, including fishing and hiking although the use of botanical species is likely to be limited. This SQ is largely impacted by encroaching forestry and alien vegetation within the riparian zone. Removal of forestry species from wetland and riparian areas and improving buffers where possible will improve riparian zone continuity and reduce wetland/riparian modification. However as utilisation of botanical species is low this will probably not result in major benefits.

Management of nutrient levels (from irrigation and settlements) and water abstraction (lower flows exacerbate water quality issues) will improve the present state of water quality; probably to a B EC. This would have potentially positive impacts for downstream users who depend on the river for direct abstraction.

From the perspective of fish, due to the presence of the aggressive predatory alien trout in this reach, it is estimated that most indigenous species may be eradicated. The indigenous species has no/limited utilization potential (no angling) and hence the primary utilization of the fish resource is recreational fishing of the alien trout. An ecological improvement towards the REC may therefore require eradication/decrease of trout and hence a decrease in the utilization potential of the reach.

Flood attenuation and sediment trapping should improve in the medium term and this would be a net benefit as floodplain and wetland sections will be restored. The valley bottom wetlands, including some floodplain sections, have historically been converted to forestry. The REC will result in the restoration of large wetland areas through the removal of forestry from wetland and riparian areas. This will improve habitat diversity, flood attenuation and most importantly streamflow and water provision to downstream reaches. Again this would potentially have a net positive benefit for ecosystems services.

The general improvement of the area through attaining the REC would probably lead to higher aesthetic values being attached to the area and this may have some impact on recreational utilisation but the impact on fishing as a recreational activity would probably be seen overall as negative as a key recreational fishing species could be negatively impacted.

7.4 B81E-00213: UPPER AREA

This is approximately 37 km stretch of river which is rural in nature with the upper half being commercial farmlands. The river is highly developed with many small dams and weirs.

Riparian vegetation will improve mainly if non-flow related impacts are addressed such as forestry (same comment as in Section 7.3 is applicable) and commercial farming activities. However utilisation of these species is probably low.

Although this area was not identified as a water quality hotspot an improvement in irrigation practices (including return flows and abstractions) should result in an improvement in overall water quality.

As flood attenuation and sediment trapping should improve in the medium term, small floodplain sections will be restored. Valley bottom wetlands (some wetlands and the riparian zone) have historically been converted to forestry. To achieve the REC, forestry should be set back from riparian and wetland areas in order to be legally compliant. This will improve habitat diversity, flood attenuation and most importantly streamflow and water provision to downstream reaches. All of these improvements would potentially have a net positive benefit for ecosystems services and downstream users.

An improvement in EC for fish will be associated with an increase in Frequency of Occurrence (FROC) of most fish species. One can therefore expect that an increase in the fish stock may increase the availability of fish for utilization.

A general improvement of the area through attaining the REC would probably lead to higher aesthetic values being attached to the area and this may have some impact on recreational activities.

7.5 B81E-00213: LOWER AREA

There is a considerable presence of townships in the lower half of the SQ - extending 16 km along the northern bank of the river including the Maleketla Townships, as well as extending 9 km along the northern bank of the river covering the Mamitwa Township. There is limited evidence of subsistence agriculture and formal agriculture is undertaken on a 16 km stretch of the river along the south bank, and both sides of the river for an additional 9 km on the lower reaches of the river.

Improved flows will improve riparian vegetation slightly (only marginal and lower zones) but nonflow related impacts are the major determinants of the PES for riparian vegetation. Since vegetation use and removal are dominant it is unlikely to manage these in a way that will improve the PES and as such little positive impact would be expected.

Management of nutrient levels (from irrigation and settlements) and water abstraction (i.e. lower flows exacerbate water quality issues) will improve the present state of water quality with net positive results downstream to users.

An improvement in EC for fish would probably be associated with an increase in FROC of most fish species and this will increase the availability of fish for utilization.

Attaining the REC would have a limited impact in the geomorphology. Some improvement of the instream habitat could be expected however. No/few wetlands in this lower, more arid reach are present and therefore no impacts on wetlands are expected from attaining the REC.

The general improvement of the area through attaining the REC would probably lead to higher aesthetic values being attached to the area and this may have some impact on recreational activities.

8 **REFERENCES**

Department of Water Affairs and Forestry, South Africa (DWAF). 1999. Resource directed measures for the protection of water resources. Volume 3: River ecosystems, version 1.0.

Department of Water Affairs and Forestry (DWAF). 2004. Letaba Catchment Reserve Determination Study: Resource Unit Report. Prepared by Pulles Howard and de Lange Inc. (RG Heath). DWAF Report No. RDM/B800/00/CON/COMP/0704.

Department of Water Affairs and Forestry (DWAF). 2006a. Letaba Catchment Reserve Determination Study: Main Report. Prepared by Pulles Howard and de Lange Inc. (RG Heath). DWAF Report No. RDM/B800/00/CON/COMP/1304.

Department of Water Affairs and Forestry (DWAF). 2006b. Letaba Catchment Reserve Determination Study: EWR Report: Quantity. Prepared by Pulles Howard and de Lange Inc. (RW Palmer & RG Heath). DWAF Report No. RDM/B800/01/CON/COMP/0904.

Department of Water Affairs, South Africa, September 2012. Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment. Inception Report. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. RDM/WMA02/00/CON/CLA/0112.

Department of Water Affairs, South Africa, March 2013a. Classification of Water Resources and Determination of the Resource Quality Objectives in the Letaba Catchment. Status Quo assessment, IUA and biophysical node delineation and identification. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. RDM/WMA02/00/CON/CLA/0113.

Department of Water Affairs. 2013b. Review and update of the Desktop Present Ecological State (PES) and Ecological Importance (EI) - Ecological Sensitivity (ES) of South African Rivers according to sub-quaternary catchments: Olifants WMA.

Hughes, D.A. and Hannart, P. 2003. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology 270(3-4), 167-181.

Hughes, D.A., Desai, A.Y., Louw, D. and Birkhead, A.L. 2012. Development of a revised desktop model for the determination of the Ecological Reserve for rivers. Water Research Commission (WRC) Report no. 1856/1/12. WRC, Pretoria, South Africa. Available at http://www.wrc.org.za.

Hughes, D.A., Desai, A.Y., Birkhead, A.L., and Louw, D. In press. A new approach to rapid, desktop-level, environmental flow assessments for rivers in southern Africa. Special issue: Hydrological Science for Environmental Flows.

Hughes, D.A., Hannart, P. and Watkins, D. 2002. Continuous baseflow separation from time series of daily and monthly streamflow data. Water SA, 29(1), 43-48.

Kleynhans, C.J. and Louw, M.D. 2007. Module A: EcoClassification and EcoStatus determination in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT329-08. Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., Van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L. and Nienaber, S. 2011. Technical Report for the National Freshwater Ecosystem Priority Areas project. WRC Report No. 1801/2/11.

Rowntree, K.M. and Wadeson, R.A. 1999. A hierarchical framework for categorising the geomorphology of river systems. Water Research Commission Report. 497/1/99. WRC, Pretoria.

9 APPENDIX A: 2006 ECOCLASSIFICATION RESULTS

Table 9.1 Summary of the EcoClassification results

EWR 1	APPEL		
EIS: MODERATE Highest scoring metrics were intolerance of instream biota			
to no flow and physico-chemical changes; species/taxon richness was high for a transitional zone, diversity of habitat types which included pools, rapids, runs, riffles,	Component	PES & REC	
overhanging vegetation, waterfalls and cascades. PES: C	Hydrology	С	
 The main flow related impacts are related to the various dams and weirs causing flow alteration and resulting in: Lower base flows and reduction in magnitude and frequencies of machine to flow. 	Physico chemical	В	
 Change in water temperature due to dam releases. Habitat fragmentation affecting fish recruitment and distribution 	Geomorphology	С	
 Reduced habitat availability and decreased diversity and abundance of macro-invertebrate taxa with preferences for fast flowing and moderately fast flowing 	Fish	С	
 water. Reduced base flows resulting in vegetation encroachment 	Invertebrates	C/D	
Non-flow related impacts include encroachment of alien invasive plants.	Riparian vegetation	С	
REC: C FIS was MODERATE and the REC was set to maintain the	EcoStatus	С	
PES.			

EWR 2: L	ETSITELE		
EIS: MODERATE Highest scoring metrics were species richness (25 fish			
species expected) and the presence of four flow-dependent fish species. Letsitele River provides an important refuge for the Letaba River during low flow conditions.	Component	PES &	REC
PES: D The main flow related impacts are related to the various	Hydrology	С	
farm dams and abstraction irrigation causing flow alteration and resulting in:	Physico chemical	C/E	
 Deteriorated water quality due to increased nutrients caused by irritation 	Geomorphology	D	
 Habitat fragmentation affecting fish recruitment and distribution. Reduction in macro-invertebrate species diversity 	Fish	С	
caused by nutrient enrichment and associated benthic algal growth which limits habitats.	Invertebrates	D	
Non-flow related impacts e.g. land-use changes, severe erosion, encroachment of alien invasive vegetation and vegetation removal impact the reach considerably.	Riparian vegetati	on D	
REC: D EIS was MODERATE and the REC was set to maintain the	EcoStatus	D	
PES however geomorphology and riparian vegetation had to improve from a D/E to a Category D.			
crocodile (Crocodylus niloticus), the expected presence of two flow-dependent fish species (Chiloglanis pretoriae, Barbus eutaenia), provision of refugia and the high number of fish species expected (29 species).			
PES: C/D The main flow related impacts are related to river regulation (i.e. Tzaneen Dam), large instream irrigation dams and	Component	PES	REC
 Change in low flows and periods of zero flow. Reduction in frequency, magnitude and duration of medarate and large flows and reduction in frequency. 	Hydrology	D	С
resulting in decreased removal and scouring of sediment and vegetation from the bed of the macro- channel and less vegetation encreachment of the active	Physico chemical	С	В
 channels and continual changes in riparian vegetation. Deteriorated water quality due to nutrient return flows from intensive irrigation, changes in water temperature 	Geomorphology	С	B/C
 and dissolved oxygen due to high percentage of surface area impounded by weirs. Habitat fragmentation affecting fish recruitment and 	Fish	С	B/C
 distribution as well as migration. Reduced macro-invertebrate species diversity and abundance with preference for fast flowing water. 	Invertebrates	D	С
reduced habitat availability. Non-flow related impacts include mainly pesticide use.	Riparian vegetation	D	С
agriculture and alien vegetation invasion.	EcoStatus	C/D	С
Improvement of PES due to HIGH EIS rating. Improvement was based on improved low flows and floods which are now attainable due to the prospect of a new dam in the system with the aim of supplying EWRs as well as increasing the dam wall at Tzaneen Dam. Other improvements include better water quality, regularly maintained channel and re- established marginal and riparian vegetation.			

EWR 4: LETABA RANCH

HIGH Presence of rare and endangered species such as the crocodile (C. niloticus) and the white backed night heron (Gorsachius leuconotus), diversity of habitats and the proximity of the Kruger National Park (rated as national as						
there are no fences).	Component			PES	RE	c
PES: C/D The main flow related impacts are related to river regulation (i.e. Tzaneen Dam) and instream dams as well as irrigation	Hydro	ology	D		С	;
 causing flow alteration and resulting in: Lower base flows and absence of medium sized floods. Deteriorated water quality due to increased nutrients, 	Physi	co chemical	E	3/C	В	3
 turbidity and temperature. Reduction in middle order floods leading to loss of cover, abundance and structure in the lower riparian zone. 	Geon	norphology	C	C/D	С	-
 Habitat fragmentation affecting fish recruitment and distribution as well as migration. 	Fish			С	B/	С
abundance with preference for fast flowing water, reduced habitat availability.	Inver	tebrates		D	С	;
Non-flow related impacts are presence of alien fish species.	Ripar	ian vegetation		D	C/	D
Improvement of PES due to HIGH EIS rating. Improvement was based on improved low flows and floods which are now demine the propert of a new demine the protocol	EcoStatus			C/D		;
attainable due to the prospect of a new dam in the system with the aim of supplying EWRs as well as increasing the dam wall at Tzaneen Dam. Other improvements include improved water quality, a change in channel pattern and an increase in instream habitat diversity.						
EWR 5: KL	EIN LET	ГАВА				
EIC: MODERATE						
white-backed night heron (G. leuconotus), the saddle-billed stork (Ephippiorhynchus senegalensis) and osprey (Pandion haliaetus) as well as high diversity of riparian zone tunes		Componen	t PES & R		REC	
PES: C		Hydrology		D		
I he main flow related impacts are related to river regulation (i.e. Middle Letaba Dam) and instream dams as well as irrigation causing flow alteration and resulting in: Reduced flows especially base flows		Physico chemica	al B/C		;	
 Deteriorated water quality due to increased nutrients. Loss of cover, abundance and structure in the lower riparian zone. 		Geomorphology		С		
 Habitat fragmentation affecting fish recruitment and distribution as well as migration. Reduction in fast and moderate flowing water reducing 		Fish		С		
macro-invertebrate species abundance with preference for shallow flowing water, reduced cobble and fringing vegetation habitat availability.		Invertebrates		D		
Some non-flow related impacts occur, particularly vegetation removal (chopping of mid-sized and larger trees)		Riparian vegetat	ion	B/C	;	
and subsistence agriculture. Exotic fish species occur. REC: C	EcoStatus			С		
EIS was MODERATE and the REC was set to maintain the PES.						

EWR 6: LO	NELY BULL		
EIS: HIGH Presence of rare and endangered species such as the			
crocodile (C. niloticus), white backed night heron (G. leuconotus), and saddle billed stork. Species/taxon richness; large pools are important refugia as the river stops flowing. Important conservation area – Kruger	Component	PES	REC
National Park.	Hydrology	D	С
PES: C The main flow related impacts are related to river regulation (i.e. instream dams within KNP and rest of reach) causing flow alteration and resulting in:	Physico chemical	С	В
 Reduced low flows and short duration of high flows, increase in zero flow periods and reduction in frequency, magnitude and duration of moderate and 	Geomorphology	С	С
 large floods. Decreased removal and scouring of sediment from the bed of the macro-channel. 	Fish	С	В
 Increased water temperature and decreased oxygen. Loss of cover and abundance in the lower riparian zone. Habitat loss. Zero flow prevents fish movement. 	Invertebrates	D	С
 Reduced abundance and number of taxa with preference for very fast and moderate flowing water and reduced habitat availability. 	Riparian vegetation	С	В
REC: B Improvement of PES due to HIGH EIS rating. Improvement	EcoStatus	С	В
was based on restoration of low flows, no zero flows and improved water quality.			
EWR 7: LET	ABA BRIDGE		
Presence of rare and endangered species such as the crocodile (C. niloticus), white backed night heron (G. leuconotus), saddle billed stork, and Pels fishing owl. Species/taxon richness; large pools are important refugia as the river stops flowing. Important conservation area –			
Rruger National Park.	Component	PES	REC
The main flow related impacts are related to river regulation (i.e. instream dams within KNP and rest of reach) causing flow alteration and resulting in:	Hydrology	D	С
 Reduced low flows, increase in zero flow periods and reduction in frequency, magnitude and duration of moderate and large floods. 	Physico chemical	С	В
 Decreased removal and scouring of sediment from the bed of the macro-channel. Increased water temperature and decreased oxygen. 	Geomorphology	С	В
 Loss of cover and abundance in the lower riparian zone. Habitat loss. Zero flow prevents fish movement. Reduced abundance and number of taxa with preference for your fact and moderate flowing water and 	Fish	С	В
reduced habitat availability.	Invertebrates	D	С
and urban runoff causing erosion and sedimentation input into rivers. Leaching of fertilizers into the river has enriched	Riparian vegetation	С	В
REC: B	EcoStatus	С	В
was based on less low flows, no zero flows, general increase in marginal vegetation, an improvement of fish migratory routes, an improvement in water quality, more diversity of instream habitats and a deeper, more defined active channel.			

10 APPENDIX B: 2006 EWR RESULTS

10.1.1 Baseline low flow EWR requirements

A summary of the EWR requirements (DWAF, 2006b) are provided in Table 10.1.

Table 10.1 Summary of the EWR requirements

Duration	Flow (m ³ /s)		Motivation							
EWR 1: AF	PPEL	PES/REC: C	Fish: C	Macro-invertebrates: C/D						
		D	RY SEASON							
0%	0	Fish: Zero breeding capability and	l very limited extremely f	ast shallow (FS) habitat remaining.						
5%	0.125	Fish: Mountain stream, providing other rheophilic species.	limited fast shallow habit	at for survival of Barbus eutaenia and						
10%	0.15	Invertebrates: There is enough st depth (>10 cm) to ensure the surv selected as an indicator species for	tones-in-current habitat v ival of the highly flow dep or the rheophilic macro-in	vith fast enough velocities (0.3 m/s) and bendent mayfly Tricorythus sp., which was avertebrate community.						
30%	0.225	Invertebrates: The river has enous sp.	vertebrates: The river has enough flow to ensure a healthy population of the mayfly, Tricorythus							
	WET SEASON									
0%	0.12	Fish: Zero breeding capability and	l very limited extremely I	FS habitat remaining.						
5%	0.18	Fish: Mountain stream, providing rheophilic species.	limited fast shallow habit	at for survival of B. eutaenia and other						
20%	0.26	Fish: Providing habitat for gonada inundated margins which provide t	l development and fast of for juvenile development.	leep (FD) habitats and cover including						
EWR 2: LE	ETSITEL	E PES/REC: D	Fish: C	Macro-invertebrates: D						
		D	RY SEASON							
10%	0.03	Invertebrates: There is enough st depth (>10 cm) to ensure the surv selected as an indicator species for a duration of not less than 10%. H sustainability and gender equity in	vertebrates: There is enough stones-in-current habitat with fast enough velocities (0.3 m/s) and epth (>10 cm) to ensure the survival of the highly flow dependent mayfly Tricorythus sp., which was elected as an indicator species for the rheophilic macro-invertebrate community. This should be for duration of not less than 10%. Higher drought flows are required in the summer months to ensure ustainability and gender equity in the Tricorythus population.							
30%	0.29	Fish: Providing limited fast deep h some gonad development.	abitat but abundant FS o	cover. Improved marginal cover leading to						
		И	/ET SEASON							
0%	0	Fish: Good velocities but depths r	emain very shallow for B	eutaenia.						
5%	0.29	Fish: Providing limited FD habitat gonad development.	but abundant FS cover.	Improved marginal cover leading to some						
30%	1.15	Fish: Providing good habitat for re available for juvenile development	ecruitment and survival.	FD habitats and inundated margins						
EWR 3: PF	RIESKA	PES: C/D	Fish: C	Macro-invertebrates: D						
		D	RY SEASON							
0%	0	Fish: No FD and FS habitats occu	ır.							
10%	0.05	Fish: FS habitat very limited but w	vith velocities acceptable	to maintain Chiloglanis pretoriae.						
40%	0.13	Fish: Providing limited FD habitat gonad development.	but abundant FS cover.	Improved marginal cover leading to some						
		И	/ET SEASON							
0%	0.13	Fish: Moderate FS habitats with g conditions.	ood velocities to maintai	n C. pretoriae population in healthy						
20%	0.25	Fish: Providing no FD habitat but gonad development.	abundant FS cover. Imp	proved marginal cover leading to some						
40%	0.52	Fish: Providing good habitat for re available for juvenile development	ecruitment and survival. for indicator and other s	FD habitats and inundated margins pecies.						
EWR 3: PF	RIESKA	REC: C	Fish: B/C	Macro-invertebrates: C						

Duration	Flow (m ³ /s)		Motivation							
	-		DRY SEASON							
5%	0.05	Fish: FS habitat very limited	d but with velocities acceptable to n	naintain C. pretoriae.						
10%	0.13	Fish: FS habitat very limited	sh: FS habitat very limited but with velocities acceptable to maintain C. pretoriae.							
40%	0.25	Fish: providing limited FD h gonad development.	abitat but abundant FS cover. Imp	roved marginal cover leading to some						
			WET SEASON							
5%	0.13	Fish: Moderate FS habitats conditions.	with good velocities to maintain C.	pretoriae population in healthy						
10%	0.25	Fish: Providing good habita available for juvenile develo	t for recruitment and survival. FD h pment for indicator and other speci	abitats and inundated margins es.						
40%	0.75	Fish: Providing good habita available for juvenile develo	t for recruitment and survival. FD h pment for indicator and other speci	abitats and inundated margins es.						
EWR 4: LE	TABA R	ANCH PES: C/D	Fish: C M	acro-invertebrates: D						
			DRY SEASON							
0%	0.03	Fish: FS habitat very limited	I but with velocities still acceptable	to maintain C. pretoriae.						
10%	0.06	Fish: FS habitat very limited	I but with velocities still acceptable	to maintain C. pretoriae.						
30%	0.18	Fish: Providing limited fast of leading to some gonad deve	deep habitat but abundant fast shal elopment.	low cover. Improved marginal cover						
			WET SEASON							
0%	0.07	Fish: Moderate FS habitats	with velocities to maintain C. preto	riae populations in healthy condition.						
25%	0.63	Fish: Providing good habita available for juvenile develo	t for recruitment and survival. FD h pment for indicator and other speci	nabitats and inundated margins es.						
EWR 4: LE	TABA R	ANCH REC: C	Fish: B/C	Macro-invertebrates: C						
			DRY SEASON							
0%	0.03	Fish: FS habitat very limited	d but with velocities still acceptable	to maintain C. pretoriae.						
5%	0.06	Fish: FS habitat very limited	d but with velocities still acceptable	to maintain C. pretoriae.						
25%	0.25	Fish: FD and FS providing r margins available for juvenil	moderate habitat for recruitment an le development for indicator and oth	d survival. FD habitats and inundated ner species.						
			WET SEASON							
0%	0.08	Fish: Moderate FS habitats	with velocities to maintain C. preto	riae populations in healthy condition.						
10%	0.18	Fish: Providing no FD habit gonad development.	at but abundant FS cover. Improve	ed marginal cover leading to limited						
20%	0.63	Fish: Abundant FD and FS occurrence improving. FD r indicator and other species.	providing good habitat for recruitme nabitats and inundated margins ava	ent and survival. Frequency of ilable for juvenile development for						
EWR 5: KL	EIN LET	TABA PES: C	Fish: C	Macro-invertebrates: D						
			DRY SEASON							
0%	0	Fish: No FD and FS habitat	s occur.							
10%	0.019	Inverts: There is enough flo flowing).	w to ensure that the downstream ri	ffle is covered (does not stop						
50%	0.15	Inverts: The discharge over	r the riffle would be sufficient to pro	vide a range of depths and velocities.						
		·	WET SEASON							
0%	0.019	Fish: No FD and FS habitat	s occur.							
10%	0.026	Inverts: There is enough flo	w over the riffle to ensure that there	e is small range of velocities.						
50%	0.335	Inverts: The discharge over	r the riffle would be sufficient to pro	vide a range of depths and velocities.						
EWR 6: LC	DNELY B	ULL PES: C	Fish: C	Macro-invertebrates: D						
			DRY SEASON							
0%	0	Fish: FS habitat very limited	but with velocities still acceptable	to maintain Chiloglanis engiops.						

Duration	Flow (m ³ /s)	Motivation							
10%	0.14	Fish: Providing no FD habitat but some FS cover. Frequency of occurrence in drought conditions for C. engiops remains stable.							
35%	0.45	Fish: FD and FS providing moderate habitat for recruitment and survival. FS habitats are deep enough to provide for juvenile development of indicator and other species.							
		WET SEASON							
0%	0.24	Fish: Moderate FS sandy habitats with velocities to maintain C. engiops populations.							
10%	0.45	Fish: Providing some FD habitat but abundant FS cover. Improved water column cover leading to limited gonad development.							
40%	0.625	Fish: Abundant FD and FS providing good habitat for recruitment and survival. Frequency of occurrence improving. FD habitats and inundated margins available for juvenile development for indicator and other species.							
EWR 6: LC	NELY B	ULL REC: B Fish: B Macro-invertebrates: C							
		DRY SEASON							
0%	0	Fish: FS habitat very limited but with velocities still acceptable to maintain C. engiops.							
5%	0.14	Fish: Providing no FD habitat but some FS cover. Frequency of occurrence in drought conditions for C. engiops remains stable.							
30%	0.625	Fish: FD and FS providing good habitat for recruitment and survival. FS habitats are deep enough to provide for juvenile development of indicator and other species.							
		WET SEASON							
0%	0.24	Fish: Moderate FS sandy habitats with velocities to maintain C. engiops populations.							
10%	0.625	Fish: Providing some FD habitat but abundant FS cover. Improved water column cover leading to limited gonad development.							
40%	2	sh: Abundant FD and FS providing good habitat for recruitment and survival. Frequency of ccurrence improving. FD habitats and inundated margins available for juvenile development for dicator and other species.							
EWR 7: LE	TABA B	RIDGE PES: C Fish: C Macro-invertebrates: D							
		DRY SEASON							
5%	0.15	Fish: FS habitat very limited but with velocities still acceptable to maintain C. engiops.							
10%	0.25	Fish: Providing no FD habitat but some FS cover. Frequency of occurrence in drought conditions for C. engiops remains stable.							
35%	2.5	Fish: FD and FS providing moderate habitat for recruitment and survival. FS habitats are deep enough to provide for juvenile development of indicator and other species.							
		WET SEASON							
5%	0.25	Fish: Moderate FS sandy habitats with velocities to maintain C. engiops populations.							
10%	0.5	Fish: Providing no FD habitat but abundant fast shallow cover. Improved water column cover leading to limited gonad development.							
35%	3	Fish: Abundant FD and FS providing good habitat for recruitment and survival. Frequency of occurrence improving. FD habitats and inundated margins available for juvenile development for indicator and other species.							
EWR 7: LE	TABA B	RIDGE REC: B Fish: B Macro-invertebrates: C							
		DRY SEASON							
5%	0.15	Fish: FS habitat very limited but with velocities still acceptable to maintain C. engiops.							
10%	0.5	Fish: Providing no FD habitat but some FS cover. Frequency of occurrence in drought conditions for C. engiops remains stable.							
35%	3.5	Fish: FD and FS providing good habitat for recruitment and survival. FS habitats are deep enough to provide for juvenile development of indicator and other species							
		WET SEASON							
0%	0.25	Fish: Moderate FS sandy habitats with velocities to maintain C. engiops populations.							
10%	2	Fish: Providing some FD habitat but abundant fast shallow cover. Improved water column cover leading to limited gonad development.							
40%	4	Fish: Abundant FD and FS providing good habitat for recruitment and survival. Frequency of occurrence improving. FD habitats and inundated margins available for juvenile development for indicator and other species.							

10.1.2 High flows

A summary of the high flows (DWAF, 2006b) are provided in Table 10.2.

Table 10.2Summary of the high flows

Flood Class (m³/s)	Macro- invertebrates	Fish	Vegetation	Geomorphology	FINAL ¹	Months	Daily average	Duration		
EWR 1: APPEL PES: C ECOSTATUS										
CLASS I (1.2 - 2.5 m³/s)		12			2	Mar, Nov	2	2		
CLASS II (2 - 5 m³/s)	2			6	6	Nov, Dec, Jan, Feb, Mar	3.5	3		
CLASS III (4.5 - 10.5 m³/s)		1	1	2	2	Dec, Apr	8	4		
CLASS IV (20 - 28 m³/s)			1	1:2	1	Feb	20	6		
EWR 2: LETSITELE PES: D ECOSTATUS										
CLASS I (2.5 - 4 m³/s)	3	8		15	10	Nov, 2x[Dec – Mar], Apr	3.5	2		
CLASS II (3.5 - 6 m³/s)		1			1	De c	4.5	2		
CLASS III (15 m³/s)				2	2	Feb, Dec	15	3		
EWR 3 PRIESKA PES ECOSTATUS C/D										
CLASS I (6 - 10 m³/s)	6	6			6	Nov, Dec, Jan, Feb, Mar, Apr	7	2		
CLASS II (12 - 18 m³/s)	2	1	3		3	Dec, Jan Mar	14	3		
CLASS III (50 - 90 m³/s)			1		1	Feb	70	4		
CLASS IV (150 - 220 m³/s)			1:2	1:2	1:2*	Mar	160	6		
*Included as a flood of 6 days	S.					·				
		EWR	3 PRIES	KA REC	ECOSTAT	US C				
CLASS I (6 - 10 m³/s)		8	8		8	Oct, Nov, 2x[Dec], Jan, Feb, Mar, Apr	7	2		
CLASS II (12 - 18 m³/s)	3	1	3		3	Dec, Jan Mar	14	3		
CLASS III (50 - 90 m³/s)		1	1		1	Feb	70	4		
CLASS IV (150 - 220 m³/s)			1:2	1:2	1:2	Mar	160	6		
	EV	VR 4: LE	TABA R		ES ECOST	ATUS C/D				
CLASS I (4 - 8 m³/s)		5			5	Jan, Mar, Apr, Nov, Dec	6	3		
CLASS II (10 - 22 m³/s)	2	1	4		4	Jan, Apr, Nov, Dec	15	4		
CLASS III (60 - 180 m³/s)			1	1	1	Mar	60	6		
CLASS IV (250 - 420 m³/s)			1	1:2	1	Feb	150	6		
CLASS V (650 - 1000 m³/s			1:10		1:10					
	E	WR 4: LI	ETABA	RANCH	REC ECOS	TATUS C				
CLASS I (4 - 8 m³/s)		7			4	Jan, Apr, Nov, Dec	6	3		
CLASS II (10 - 22 m³/s)	3	1	6		6	Jan, Apr, Nov, Dec	15	4		
CLASS III (60 - 180 m³/s)			2	1	2	Dec, Jan	60	6		
CLASS IV (250 - 420 m³/s)			2	1:2	2	Feb, Mar	150	6		
	EWR \$	5: KLEIN	LETAB	A PES A	AND REC E	COSTATUS C				
CLASS I (8 - 12 m³/s)	3	1	6		6	Nov, Dec, Jan, Feb, Mar, Apr	8	2		

WP - 10640

Flood Class (m ³ /s)	Macro- invertebrates	Fish	Vegetation	Geomorphology	FINAL ¹	Months	Daily average	Duration		
CLASS II (14 - 25 m³/s)		2	3	2	3	Nov, Feb, Apr	12	3		
CLASS III (60 - 126 m ³ /s)			1	1:2	1	Mar	60	4		
CLASS IV (175 - 480 m³/s)			1:10		1:10		150	5		
	EWR 6: LONELY BULL PES ECOSTATUS C									
CLASS I (5 - 8 m³/s)		5			2	Dec, Apr	6	3		
CLASS II (10 - 27 m³/s)	2	2	5	3	5	Oct, Nov, Dec, Jan, Apr	15	4		
CLASS III (80 - 150 m ³ /s)			2*	1	1	Jan, Mar	120	6		
CLASS IV (300 m ³ /s)			1*	1	1:5	Feb		8		
* This only happened twice a year in four years in a twenty year record - therefore only one was allocated.										
	E	EWR 6: I	ONELY	BULL R	EC ECOST	ATUS B				
CLASS I (5 - 8 m³/s)		8			2		6	3		
CLASS II (10 - 27 m³/s)	3	2	6	4	6		15	4		
CLASS III (80 - 150 m³/s)			3	1	1		120	6		
CLASS IV (300 m ³ /s)			1	1	1:5			8		
	E/	WR 7: LI	ETABA I	BRIDGE	PES ECOS	TATUS C				
CLASS I (5 - 8 m³/s)		7			5	3x[Dec], Jan, Apr	6	3		
CLASS II (10 - 30 m³/s)	2	2	5	3	5	Oct, Nov, Dec, Jan, Apr	15	4		
CLASS III (80 - 160 m ³ /s)			2*	1	2	Feb	120	6		
CLASS IV (300 - 550 m ³ /s)			1*	1:?	1	Feb		8		
* This only happened twice a	year in f	[:] our year	s in a tw	enty yea	r record - the	erefore only one was allocated.				
	EV	NR 7: LF	ETABA I	3RIDGE	REC ECOS	TATUS C				
CLASS I (5 - 8 m³/s)		8			2		6	3		
CLASS II (10 - 30 m³/s)	3	2	6	4	6		15	4		
CLASS III (80 - 160 m ³ /s)			3	1	1		120	6		
CLASS IV (300 - 550 m³/s)			1	1:2	1:5			8		

1 Final refers to the agreed on number of events considering the individual requirements for each component.

11 APPENDIX C EWR RESULTS AS RDRM OUPUT

A report is generated as part of the RDERM to provide:

- the hydrology summary;
- the parameters that were adjusted from the default;
- and the final output results (EWR rules) for all categories.

This report is provided for all the EWR sites in the following sections.

11.1 EWR 1: APPEL

11.1.1 Hydrology data summary

Natural Flows:						Present Day Flows:					
$\Lambda rop (km^2)$	MAR	Ann.S	D	Q75	Ann. C	CV	$Aroa (km^2)$	MAR	Ann.SD	Q75	Ann. CV
Area (km)		(r	n ³ * 10) ⁶)	•		Area (km)		(m ³ *	10 ⁶)	
0.0	99.84	60.39	3	3.52	0.6		0	53.1	49.44	0.82	0.93
% Zero flows	0.0					% Zei		0.0			
Baseflow Parameters:			4	0.96		Rasoflow Para	motors:		A	0.96	
basenow Faran	neters.		E	3	0.44		Dasenow Fala	meters.		В	0.44
BFI					0.51		BFI				0.35
Hydro Index					2.4		Hydro Index				6.6
молтн	I	MEAN	SD	C	× V		MONTH	MEAN SD		CV	
MONTH		(m ³ * 10 ⁶)					MONTH	(m ³ * 10 ⁶)			
Oct		3	0.8	88	0.29		Oct	1	46 2.5	1 1.7	1
Nov		3.9	1.8	85	0.47		Nov	1.2	29 1.42	2 1.	1
Dec		6.9	5.2	26	0.76		Dec	3	8.4 6.2	6 1.84	4
Jan		12.51	10).4	0.83		Jan	6	6.7 8.0	6 1.28	8
Feb		18.57	19.3	51	1.05		Feb	10.	73 16.1	3 1.5	5
Mar		18.67	19.2	25	1.03		Mar	12.8	89 16.2	1 1.20	6
Apr		12.43	10.:	58	0.85		Apr	6.4	45 9.2	2 1.43	3
May		7.35	3.2	26	0.44		May	3.4	45 2.5	4 0.74	4
Jun		5.13	1.4	46	0.29		Jun	1.	78 1.2	6 0.7	1
Jul		4.37	1	.1	0.25		Jul	1.	99 2.5	1 1.20	6
Aug		3.78	0.9	99	0.26		Aug	1.2	25 1.1	3 0.9	1
Sep		3.23	0.8	89	0.28		Sep	1.0	69 1.8	1 1.0	7

Critical months:	Wet Season	Apr	Dry Season	Oct
Max. baseflows (m³/s)	2.012		1.154	

11.1.2 Hydraulics data summary

Geomorph. Zone	4
Flood Zone	9
Max. Channel width (m)	32.5
Max. Channel Depth (m)	2.33
Max. Channel Discharge (m3/s) between 101.743 and 113.290	

11.1.3 Flow - stressor response data summary

Table of initial SHIFT factors for the Stress Frequency Curves										
Category	High SHIFT	Low SHIFT								
A	1.4	0.05								
A/B	1.5	0.1								
В	1.6	0.15								
B/C	1.7	0.2								
С	1.8	0.25								
C/D	1.85 0.3									
D	D 1.9 0.35									
Perenniality Rules: All S	easons Perennial Forced									
Alignment of maximum	stress to Present Day stress C	Category Aligned								
Table of flows (m³/s) v	stress index									
Stress	Wet Season Flow	Dry Season Flow								
0	2 0 4 9									
0	2.040	1.204								
1	1.374	1.204 0.964								
0 1 2	1.374 0.888	1.204 0.964 0.758								
0 1 2 3	2.048 1.374 0.888 0.707	1.204 0.964 0.758 0.44								
0 1 2 3 4	2.048 1.374 0.888 0.707 0.606	1.204 0.964 0.758 0.44 0.377								
5	2.048 1.374 0.888 0.707 0.606 0.505	1.204 0.964 0.758 0.44 0.377 0.314								
0 1 2 3 4 5 6	2.048 1.374 0.888 0.707 0.606 0.505 0.404	1.204 0.964 0.758 0.44 0.377 0.314 0.251								
0 1 2 3 4 5 6 7	2.048 1.374 0.888 0.707 0.606 0.505 0.404 0.303	1.204 0.964 0.758 0.44 0.377 0.314 0.251 0.188								
0 1 2 3 4 5 6 7 8	2.048 1.374 0.888 0.707 0.606 0.505 0.404 0.303 0.202	1.204 0.964 0.758 0.44 0.377 0.314 0.251 0.188 0.126								
0 1 2 3 4 5 6 7 8 9	2.048 1.374 0.888 0.707 0.606 0.505 0.404 0.303 0.202 0.101	1.204 0.964 0.758 0.44 0.377 0.314 0.251 0.188 0.126 0.063								

11.1.4 High flow estimation summary details

No High flows	when natural hig	h flows are < 1	8% of total flow	/S			
Maximum high	flows are 180%	greater than no	ormal high flow	s			
Table of norma	al high flow requi	rements (Mill. r	m ³)				
Category	Α	A/B	В	B/C	С	C/D	D
Annual	13.785	12.863	11.969	11.104	10.265	9.452	8.666
Oct	0	0	0	0	0	0	0
Nov	0.315	0.294	0.274	0.254	0.235	0.216	0.198
Dec	1.562	1.457	1.356	1.258	1.163	1.071	0.982
Jan	2.849	2.659	2.474	2.295	2.122	1.954	1.791
Feb	3.276	3.057	2.845	2.639	2.44	2.246	2.059
Mar	3.002	2.802	2.607	2.418	2.236	2.059	1.887
Apr	1.964	1.833	1.706	1.582	1.463	1.347	1.235
May	0.816	0.761	0.708	0.657	0.607	0.559	0.513
Jun	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0

11.1.5 Final Reserve summary details

EWR Flows are NOT constrained to be below Natural or Present Day Flows									
Long term mean flow requirements (Mill. m ³ and %MAR)									
Cotogony	Low Flow	ws	Total I	Flows					
Category	Mill. m ³	%MAR	Mill. m ³	%MAR					
A	17.978	18	30.32	30.4					
A/B	15.754	15.8	27.271	27.3					
В	13.823	13.8	24.54	24.6					
B/C	12.172	12.2	22.114	22.1					
С	10.807	10.8	19.998	20					
C/D	9.871	9.9	18.334	18.4					
D	9.052	9.1	16.811	16.8					

11.1.6 Flow duration and Reserve assurance tables

Columns	Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99	
Natural 1	Total flow o	duration cu	irve (mill. r	n ³)							
Oct	4.458	3.752	3.485	3.142	2.895	2.718	2.516	2.166	2.021	1.548	
Nov	5.734	5.06	4.551	3.866	3.575	3.13	2.821	2.484	2.043	1.449	
Dec	12.796	9.436	7.74	6.402	5.65	4.804	4.118	3.346	2.824	1.607	
Jan	26.995	21.004	14.67	10.598	9.195	7.352	5.76	5.082	3.618	2.237	
Feb	47.665	28.564	16.725	13.462	11.92	9.14	7.341	6.264	4.556	2.794	
Mar	47.039	29.53	19.439	14.682	12.035	8.698	7.42	5.936	4.675	3.02	
Apr	23.806	18.462	14.266	11.896	9.325	7.21	6.22	5.498	4.625	2.668	
May	12.684	10.096	8.885	7.852	6.66	5.696	5.123	4.616	4.121	2.179	
Jun	7.073	6.158	5.716	5.478	5.16	4.764	4.352	3.892	3.576	1.861	
Jul	5.824	5.128	4.98	4.78	4.385	4.138	3.793	3.442	3.133	1.674	
Aug	4.963	4.492	4.28	4.092	3.79	3.588	3.35	2.956	2.637	1.452	
Sep	4.357	3.94	3.721	3.496	3.285	3.014	2.723	2.422	2.17	1.268	
Natural E	Baseflow fl	ow duratio	on curve (n	nill. m³)							
Oct	3.858	3.642	3.267	3.09	2.785	2.677	2.475	2.166	1.989	1.349	
Nov	4.12	3.677	3.363	3.086	2.87	2.766	2.469	2.188	1.902	1.448	
Dec	4.615	4.222	3.981	3.551	3.168	3.039	2.79	2.519	2.25	1.469	
Jan	7.166	5.421	4.809	4.343	3.799	3.445	3.241	3.119	2.482	1.618	
Feb	11.489	7.005	5.946	4.615	4.398	4.062	3.543	3.343	2.622	1.861	
Mar	12.396	7.448	6.452	5.092	4.71	4.172	3.833	3.432	3.179	1.948	
Apr	9.655	7.657	6.256	5.18	4.749	4.25	3.791	3.511	3.099	2.029	
May	8.633	6.644	5.76	4.965	4.576	4.167	3.871	3.465	3.105	2.009	
Jun	6.147	5.586	5.009	4.598	4.352	4.047	3.588	3.355	2.979	1.861	
Jul	5.68	4.938	4.49	4.293	4.113	3.777	3.455	3.161	2.92	1.674	
Aug	4.891	4.336	4.184	3.855	3.66	3.474	3.116	2.845	2.594	1.452	
Sep	4.238	3.916	3.597	3.408	3.21	2.992	2.723	2.422	2.08	1.268	
Category	/ Low Flow	/ Assuranc	e curves (mill. m³)							
A Catego	ory										
Oct	2.172	1.2	1	0.856	0.746	0.664	0.603	0.559	0.528	0.507	
Nov	2.195	1.323	1.007	0.869	0.746	0.67	0.614	0.553	0.512	0.507	
Dec	2.497	1.582	1.338	1.067	0.897	0.808	0.718	0.648	0.598	0.567	
Jan	3.393	2.272	1.801	1.473	1.186	0.99	0.885	0.822	0.695	0.625	
Feb	4.911	2.884	2.198	1.493	1.335	1.147	0.926	0.824	0.679	0.67	
Mar	6.084	3.419	2.458	1.932	1.58	1.34	1.095	0.946	0.861	0.784	
Apr	4.07	3.433	2.58	1.965	1.624	1.349	1.117	0.945	0.832	0.772	

Classification & RQO: Letaba	Catchment

Columns	are FDC r	percentage	points:							
	10	20	30	40	50	60	70	80	90	99
Mav	3.842	2.871	2.382	1.865	1.578	1.338	1.102	0.96	0.847	0.771
Jun	3.029	2.199	1.843	1.575	1.414	1.222	1.035	0.893	0.8	0.702
Jul	2.925	1.929	1.618	1.446	1.331	1.145	0.982	0.87	0.804	0.673
Aug	2.595	1.657	1.435	1.226	1.117	0.997	0.852	0.772	0.71	0.596
Sep	2.187	1.38	1.124	0.977	0.881	0.759	0.665	0.61	0.559	0.525
A/B Cate	gory	1		1	1					
Oct	1.851	1.107	0.932	0.793	0.686	0.606	0.547	0.504	0.473	0.453
Nov	1.886	1.122	0.935	0.803	0.686	0.612	0.557	0.498	0.458	0.453
Dec	2.138	1.345	1.209	0.983	0.827	0.74	0.652	0.584	0.535	0.506
Jan	2.844	1.902	1.575	1.348	1.099	0.909	0.805	0.74	0.621	0.556
Feb	4.135	2.383	1.854	1.365	1.241	1.057	0.843	0.742	0.605	0.593
Mar	5.115	2.818	2.145	1.76	1.469	1.236	0.997	0.852	0.768	0.693
Apr	3.304	2.821	2.185	1.789	1.513	1.245	1.018	0.85	0.74	0.681
May	3.17	2.371	2.022	1.7	1.469	1.233	1.004	0.864	0.755	0.682
Jun	2.56	1.837	1.604	1.44	1.315	1.126	0.943	0.804	0.712	0.622
Jul	2.483	1.624	1.434	1.326	1.235	1.053	0.894	0.783	0.716	0.598
Aug	2.217	1.406	1.288	1.128	1.034	0.916	0.775	0.695	0.634	0.531
Sep	1.871	1.179	1.032	0.902	0.813	0.694	0.604	0.55	0.501	0.468
B Catego	ory									
Oct	1.454	1.034	0.865	0.73	0.626	0.548	0.491	0.449	0.419	0.4
Nov	1.539	1.031	0.867	0.74	0.627	0.554	0.501	0.444	0.404	0.398
Dec	1.745	1.223	1.111	0.906	0.758	0.672	0.586	0.52	0.473	0.444
Jan	2.318	1.652	1.435	1.248	1.012	0.828	0.725	0.659	0.547	0.487
Feb	3.359	1.965	1.67	1.265	1.147	0.967	0.761	0.66	0.532	0.516
Mar	4.163	2.394	1.95	1.632	1.358	1.131	0.9	0.757	0.674	0.602
Apr	2.681	2.268	1.963	1.671	1.403	1.14	0.918	0.754	0.647	0.589
May	2.583	1.996	1.825	1.577	1.36	1.129	0.906	0.767	0.663	0.593
Jun	2.086	1.598	1.459	1.335	1.215	1.03	0.851	0.714	0.624	0.542
Jul	2.025	1.443	1.311	1.229	1.14	0.962	0.806	0.696	0.628	0.523
Aug	1.809	1.272	1.182	1.042	0.951	0.834	0.697	0.618	0.558	0.466
Sep	1.521	1.084	0.954	0.832	0.745	0.63	0.542	0.489	0.443	0.411
B/C Cate	gory	r		r	r				r	
Oct	1.154	0.962	0.798	0.666	0.565	0.49	0.434	0.394	0.365	0.346
Nov	1.238	0.955	0.799	0.678	0.567	0.496	0.444	0.389	0.351	0.344
Dec	1.406	1.131	1.02	0.832	0.688	0.603	0.52	0.456	0.41	0.382
Jan	1.887	1.505	1.31	1.153	0.925	0.747	0.644	0.577	0.472	0.418
Feb	2.707	1.76	1.514	1.171	1.054	0.877	0.678	0.577	0.459	0.44
Mar	3.369	2.17	1.782	1.516	1.246	1.027	0.802	0.662	0.581	0.511
Apr	2.211	2.039	1.782	1.554	1.292	1.036	0.819	0.659	0.555	0.498
May	2.12	1.801	1.657	1.464	1.251	1.025	0.807	0.671	0.571	0.504
Jun	1.692	1.457	1.331	1.236	1.116	0.934	0.758	0.625	0.536	0.462
Jul	1.639	1.325	1.2	1.134	1.045	0.87	0.718	0.609	0.54	0.448
Aug	1.46	1.174	1.084	0.959	0.868	0.753	0.62	0.542	0.482	0.402
Sep	1.227	1.006	0.878	0.762	0.676	0.565	0.481	0.429	0.385	0.354
C Catego	ory	Γ	[Γ	Γ	[Γ	
Oct	1.075	0.89	0.73	0.603	0.505	0.432	0.378	0.339	0.311	0.293
Nov	1.096	0.882	0.732	0.615	0.507	0.438	0.387	0.335	0.297	0.29
Dec	1.246	1.042	0.938	0.757	0.618	0.535	0.454	0.392	0.348	0.321
Jan	1.676	1.373	1.209	1.058	0.838	0.666	0.564	0.495	0.398	0.349

Columns	Columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99		
Feb	2.398	1.585	1.403	1.078	0.96	0.787	0.595	0.495	0.385	0.363		
Mar	2.99	1.968	1.647	1.399	1.135	0.922	0.704	0.568	0.488	0.419		
Apr	1.978	1.82	1.659	1.436	1.181	0.931	0.72	0.564	0.462	0.407		
May	1.887	1.632	1.536	1.351	1.142	0.921	0.709	0.575	0.479	0.415		
Jun	1.501	1.329	1.23	1.136	1.017	0.838	0.666	0.535	0.448	0.382		
Jul	1.453	1.214	1.106	1.04	0.949	0.779	0.629	0.522	0.453	0.372		
Aug	1.293	1.081	0.998	0.876	0.785	0.672	0.543	0.465	0.406	0.337		
Sep	1.101	0.929	0.805	0.693	0.608	0.501	0.42	0.369	0.326	0.297		
C/D Cate	gory											
Oct	1.002	0.827	0.677	0.556	0.464	0.395	0.344	0.307	0.281	0.264		
Nov	1.02	0.82	0.678	0.568	0.466	0.401	0.353	0.304	0.267	0.261		
Dec	1.157	0.968	0.87	0.7	0.569	0.49	0.413	0.355	0.314	0.288		
Jan	1.54	1.275	1.123	0.98	0.773	0.611	0.514	0.447	0.357	0.312		
Feb	2.202	1.471	1.306	0.999	0.887	0.722	0.542	0.446	0.345	0.322		
Mar	2.748	1.829	1.531	1.298	1.048	0.847	0.641	0.511	0.437	0.371		
Apr	1.785	1.696	1.544	1.334	1.092	0.855	0.656	0.508	0.411	0.359		
May	1.719	1.516	1.429	1.253	1.055	0.846	0.645	0.518	0.428	0.368		
Jun	1.385	1.235	1.143	1.053	0.939	0.769	0.607	0.483	0.4	0.339		
Jul	1.343	1.128	1.027	0.963	0.876	0.715	0.573	0.471	0.404	0.332		
Aug	1.2	1.004	0.926	0.81	0.723	0.616	0.494	0.42	0.364	0.302		
Sep	1.024	0.863	0.746	0.64	0.56	0.459	0.382	0.334	0.294	0.267		
D Catego	ory				I							
Oct	0.928	0.764	0.623	0.51	0.423	0.358	0.311	0.276	0.251	0.235		
Nov	0.945	0.758	0.625	0.521	0.425	0.364	0.318	0.272	0.238	0.232		
Dec	1.072	0.895	0.802	0.643	0.52	0.445	0.373	0.318	0.279	0.255		
Jan	1.428	1.18	1.037	0.902	0.708	0.556	0.463	0.399	0.317	0.275		
Feb	2.042	1.363	1.208	0.921	0.814	0.658	0.488	0.398	0.304	0.282		
Mar	2.549	1.694	1.414	1.197	0.962	0.771	0.578	0.455	0.386	0.323		
Apr	1.657	1.573	1.429	1.231	1.002	0.779	0.591	0.452	0.36	0.311		
May	1.594	1.405	1.322	1.156	0.969	0.771	0.582	0.461	0.377	0.321		
Jun	1.284	1.143	1.056	0.97	0.861	0.701	0.547	0.43	0.351	0.297		
Jul	1.245	1.044	0.948	0.886	0.803	0.651	0.517	0.42	0.356	0.292		
Aug	1.112	0.928	0.854	0.745	0.662	0.56	0.446	0.375	0.322	0.267		
Sep	0.949	0.798	0.688	0.588	0.511	0.417	0.345	0.299	0.262	0.236		
Category	Total Flov	v Assuran	ce curves	(mill. m ³)								
A Catego	ory											
Oct	2.172	1.2	1	0.856	0.746	0.664	0.603	0.559	0.528	0.507		
Nov	2.709	1.749	1.371	1.196	1.062	0.965	0.85	0.691	0.513	0.507		
Dec	5.041	3.689	3.139	2.688	2.458	2.268	1.887	1.33	0.605	0.567		
Jan	8.034	6.117	5.086	4.432	4.033	3.654	3.018	2.066	0.708	0.625		
Feb	10.247	7.305	5.975	4.894	4.608	4.21	3.379	2.254	0.694	0.67		
Mar	10.975	7.471	5.92	5.049	4.58	4.147	3.342	2.257	0.875	0.784		
Apr	7.27	6.083	4.845	4.005	3.587	3.186	2.587	1.802	0.841	0.772		
May	5.17	3.971	3.323	2.711	2.393	2.1	1.713	1.316	0.851	0.771		
Jun	3.029	2.199	1.843	1.575	1.414	1.222	1.035	0.893	0.8	0.702		
Jul	2.925	1.929	1.618	1.446	1.331	1.145	0.982	0.87	0.804	0.673		
Aug	2.595	1.657	1.435	1.226	1.117	0.997	0.852	0.772	0.71	0.596		
Sep	2.187	1.38	1.124	0.977	0.881	0.759	0.665	0.61	0.559	0.525		
A/B Cate	gory											

Columns	Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99			
Oct	1.851	1.107	0.932	0.793	0.686	0.606	0.547	0.504	0.473	0.453			
Nov	2.366	1.52	1.275	1.109	0.981	0.887	0.778	0.627	0.459	0.453			
Dec	4.512	3.311	2.889	2.496	2.284	2.102	1.743	1.22	0.542	0.506			
Jan	7.175	5.49	4.641	4.109	3.756	3.395	2.795	1.901	0.633	0.556			
Feb	9.115	6.508	5.378	4.539	4.296	3.915	3.132	2.076	0.62	0.593			
Mar	9.679	6.599	5.375	4.668	4.268	3.855	3.094	2.074	0.781	0.693			
Apr	6.29	5.295	4.298	3.692	3.345	2.959	2.39	1.65	0.748	0.681			
May	4.41	3.398	2.899	2.491	2.23	1.945	1.574	1.196	0.758	0.682			
Jun	2.56	1.837	1.604	1.44	1.315	1.126	0.943	0.804	0.712	0.622			
Jul	2.483	1.624	1.434	1.326	1.235	1.053	0.894	0.783	0.716	0.598			
Aug	2.217	1.406	1.288	1.128	1.034	0.916	0.775	0.695	0.634	0.531			
Sep	1.871	1.179	1.032	0.902	0.813	0.694	0.604	0.55	0.501	0.468			
B Catego	ory												
Oct	1.454	1.034	0.865	0.73	0.626	0.548	0.491	0.449	0.419	0.4			
Nov	1.986	1.4	1.183	1.025	0.9	0.81	0.706	0.563	0.406	0.398			
Dec	3.953	3.053	2.675	2.314	2.113	1.94	1.601	1.112	0.479	0.444			
Jan	6.348	4.99	4.287	3.817	3.484	3.141	2.576	1.738	0.558	0.487			
Feb	7.992	5.804	4.95	4.219	3.99	3.627	2.89	1.901	0.545	0.516			
Mar	8.409	5.912	4.956	4.339	3.963	3.569	2.851	1.895	0.687	0.602			
Apr	5.46	4.57	3.93	3.442	3.107	2.735	2.195	1.499	0.655	0.589			
May	3.737	2.952	2.641	2.313	2.068	1.791	1.436	1.076	0.666	0.593			
Jun	2.086	1.598	1.459	1.335	1.215	1.03	0.851	0.714	0.624	0.542			
Jul	2.025	1.443	1.311	1.229	1.14	0.962	0.806	0.696	0.628	0.523			
Aug	1.809	1.272	1.182	1.042	0.951	0.834	0.697	0.618	0.558	0.466			
Sep	1.521	1.084	0.954	0.832	0.745	0.63	0.542	0.489	0.443	0.411			
B/C Cate	gory			•									
Oct	1.154	0.962	0.798	0.666	0.565	0.49	0.434	0.394	0.365	0.346			
Nov	1.652	1.298	1.092	0.942	0.821	0.734	0.634	0.5	0.352	0.344			
Dec	3.455	2.828	2.47	2.138	1.945	1.78	1.461	1.005	0.416	0.382			
Jan	5.626	4.603	3.956	3.536	3.218	2.893	2.362	1.578	0.483	0.418			
Feb	7.005	5.321	4.556	3.911	3.691	3.344	2.653	1.729	0.471	0.44			
Mar	7.309	5.433	4.57	4.027	3.663	3.288	2.612	1.718	0.593	0.511			
Apr	4.789	4.174	3.606	3.197	2.873	2.515	2.004	1.35	0.562	0.498			
May	3.19	2.687	2.414	2.146	1.907	1.639	1.299	0.958	0.574	0.504			
Jun	1.692	1.457	1.331	1.236	1.116	0.934	0.758	0.625	0.536	0.462			
Jul	1.639	1.325	1.2	1.134	1.045	0.87	0.718	0.609	0.54	0.448			
Aug	1.46	1.174	1.084	0.959	0.868	0.753	0.62	0.542	0.482	0.402			
Sep	1.227	1.006	0.878	0.762	0.676	0.565	0.481	0.429	0.385	0.354			
C Catego	ory		I		I		1						
Oct	1.075	0.89	0.73	0.603	0.505	0.432	0.378	0.339	0.311	0.293			
Nov	1.479	1.199	1.003	0.859	0.742	0.658	0.563	0.438	0.298	0.29			
Dec	3.14	2.611	2.278	1.965	1.78	1.622	1.324	0.899	0.354	0.321			
Jan	5.133	4.236	3.655	3.261	2.958	2.65	2.152	1.421	0.408	0.349			
Feb	6.372	4.877	4.216	3.611	3.398	3.068	2.421	1.56	0.396	0.363			
Mar	6.632	4.985	4.225	3.72	3.369	3.013	2.378	1.543	0.499	0.419			
Apr	4.361	3.794	3.345	2.955	2.643	2.299	1.815	1.203	0.469	0.407			
May	2.876	2.451	2.236	1.981	1.749	1.489	1.163	0.84	0.481	0.415			
Jun	1.501	1.329	1.23	1.136	1.017	0.838	0.666	0.535	0.448	0.382			
Jul	1.453	1.214	1.106	1.04	0.949	0.779	0.629	0.522	0.453	0.372			

Columns	are FDC p	ercentage	points:							
	10	20	30	40	50	60	70	80	90	99
Aug	1.293	1.081	0.998	0.876	0.785	0.672	0.543	0.465	0.406	0.337
Sep	1.101	0.929	0.805	0.693	0.608	0.501	0.42	0.369	0.326	0.297
C/D Cate	gory									
Oct	1.002	0.827	0.677	0.556	0.464	0.395	0.344	0.307	0.281	0.264
Nov	1.372	1.112	0.928	0.793	0.682	0.603	0.515	0.398	0.268	0.261
Dec	2.901	2.413	2.104	1.812	1.639	1.491	1.215	0.822	0.319	0.288
Jan	4.722	3.912	3.376	3.009	2.725	2.438	1.976	1.3	0.367	0.312
Feb	5.862	4.503	3.896	3.332	3.132	2.823	2.223	1.427	0.355	0.322
Mar	6.102	4.607	3.905	3.436	3.106	2.772	2.182	1.41	0.447	0.371
Apr	3.979	3.514	3.097	2.732	2.438	2.115	1.664	1.096	0.418	0.359
May	2.63	2.271	2.073	1.834	1.614	1.369	1.064	0.762	0.43	0.368
Jun	1.385	1.235	1.143	1.053	0.939	0.769	0.607	0.483	0.4	0.339
Jul	1.343	1.128	1.027	0.963	0.876	0.715	0.573	0.471	0.404	0.332
Aug	1.2	1.004	0.926	0.81	0.723	0.616	0.494	0.42	0.364	0.302
Sep	1.024	0.863	0.746	0.64	0.56	0.459	0.382	0.334	0.294	0.267
D Catego	ory									
Oct	0.928	0.764	0.623	0.51	0.423	0.358	0.311	0.276	0.251	0.235
Nov	1.268	1.026	0.853	0.727	0.623	0.549	0.466	0.359	0.239	0.232
Dec	2.671	2.22	1.934	1.662	1.501	1.363	1.108	0.746	0.284	0.255
Jan	4.346	3.597	3.102	2.762	2.498	2.23	1.804	1.18	0.325	0.275
Feb	5.397	4.143	3.582	3.059	2.872	2.584	2.03	1.296	0.314	0.282
Mar	5.623	4.241	3.591	3.157	2.848	2.536	1.991	1.279	0.394	0.323
Apr	3.668	3.24	2.853	2.513	2.237	1.934	1.515	0.99	0.366	0.311
May	2.43	2.096	1.913	1.688	1.481	1.25	0.966	0.685	0.379	0.321
Jun	1.284	1.143	1.056	0.97	0.861	0.701	0.547	0.43	0.351	0.297
Jul	1.245	1.044	0.948	0.886	0.803	0.651	0.517	0.42	0.356	0.292
Aug	1.112	0.928	0.854	0.745	0.662	0.56	0.446	0.375	0.322	0.267
Sep	0.949	0.798	0.688	0.588	0.511	0.417	0.345	0.299	0.262	0.236

11.2 EWR 2: LETSITELE

11.2.1 Hydrology data summary

Natural Flows:					Present Day Flows:					
A	MAR	Ann.SD	Q75	Ann. CV	A	MAR	Ann.SD	Q75	Ann. CV	
Area (km.)		(m ³ *)	10 ⁶)		Area (km)		(m ³	* 10 ⁶)		
0.0	116.55	78.3	2.88	0.67	0	76.42	72.48	0.91	0.95	
% Zero flows	0.0				% Zero flows	0.0				
			A	0.96		A 0				
Baseflow Para	meters:		В	0.44	Baseflow Para	meters:		В	0.44	
BFI			-	0.42	BFI	BFI				
Hydro Index				3.5	Hydro Index		6			
				_	1 1					

MONTH	MEAN	SD	CV	MONTH	MEAN	SD	сv
MONTH	(n	n ³ * 10 ⁶)		MONTH	(m ³ * 10 ⁶)		
Oct	3.05	1.77	0.58	Oct	0.87	0.87	1.01
Nov	5.52	4.03	0.73	Nov	1.99	2.47	1.24
Dec	10.46	9.15	0.88	Dec	5.45	7.86	1.44
Jan	19.62	20.8	1.06	Jan	14.11	19.2	1.36
Feb	25.67	30.28	1.18	Feb	20.94	29.44	1.41

Classification &	RQO: Letaba	Catchment
olacomoation a	rigo. Lotaba	outornitorn

Mar	21.46	22.99	1.07	Mar	17.22	22.51	1.31
Apr	11.92	10.67	0.89	Apr	8.24	10	1.21
May	6.17	3.21	0.52	May	3.03	2.46	0.81
Jun	4.06	1.56	0.38	Jun	1.64	0.95	0.58
Jul	3.25	1.17	0.36	Jul	1.21	0.57	0.47
Aug	2.83	1.07	0.38	Aug	0.96	0.48	0.5
Sep	2.55	1.09	0.43	Sep	0.76	0.46	0.6

Critical months:	Wet Season	Mar	Dry Season	Oct
Max. baseflows (m³/s)	2.225		0.93	

11.2.2 Hydraulics data summary

Geomorph. Zone	4
Flood Zone	9
Max. Channel width (m)	38.74
Max. Channel Depth (m)	2.67
Max. Channel Discharge (m3/s) between 135.237 and 148.069	

11.2.3 Flow - stressor response data summary

Table of initial SHIFT factors for the Stress Frequency Curves								
Category	High SHIFT	Low SHIFT						
A	0.55	0.01						
A/B	0.58	0.02						
В	0.6	0.03						
B/C	0.65	0.04						
С	0.7	0.06						
C/D	0.75	0.08						
D	0.8	0.1						
Perenniality Rules: All S	easons Perennial Forced							
Alignment of maximum	stress to Present Day stress C	Category Aligned						
Table of flows (m³/s) v	stress index							
Stress	Wet Season Flow	Dry Season Flow						
0	2.326	0.962						
1	2 126							
	2.120	0.908						
2	1.722	0.908 0.76						
2 3	1.722 1.382	0.908 0.76 0.676						
2 3 4	1.722 1.382 1.08	0.908 0.76 0.676 0.606						
2 3 4 5	1.722 1.382 1.08 0.821	0.908 0.76 0.676 0.606 0.472						
2 3 4 5 6	1.722 1.382 1.08 0.821 0.591	0.908 0.76 0.676 0.606 0.472 0.222						
2 3 4 5 6 7	1.722 1.382 1.08 0.821 0.591 0.444	0.908 0.76 0.676 0.606 0.472 0.222 0.166						
2 3 4 5 6 7 8	1.722 1.382 1.08 0.821 0.591 0.444 0.296	0.908 0.76 0.676 0.606 0.472 0.222 0.166 0.111						
2 3 4 5 6 7 8 9	1.722 1.382 1.08 0.821 0.591 0.444 0.296 0.148	0.908 0.76 0.676 0.606 0.472 0.222 0.166 0.111 0.055						

11.2.4 High flow estimation summary details

No High flows when natural high flows are < 20% of total flows									
Maximum high flows are 165% greater than normal high flows									
Table of normal high flow requirements (Mill. m ³)									
Category	A	A/B	В	B/C	С	C/D	D		
Annual	14.604	13.701	12.818	11.955	11.112	10.288	9.482		

Classification & RQO: Letaba Catchment

Oct	0	0	0	0	0	0	0
Nov	1.343	1.26	1.179	1.1	1.022	0.946	0.872
Dec	2.279	2.138	2	1.865	1.734	1.605	1.479
Jan	3.336	3.13	2.928	2.731	2.539	2.35	2.166
Feb	3.202	3.004	2.811	2.622	2.437	2.256	2.079
Mar	2.5	2.345	2.194	2.046	1.902	1.761	1.623
Apr	1.311	1.23	1.151	1.073	0.997	0.923	0.851
May	0.633	0.594	0.555	0.518	0.481	0.446	0.411
Jun	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0

11.2.5 Final Reserve summary details

EWR Flows are NOT constrained to be below Natural or Present Day Flows										
Long term mean flow requirements (Mill. m ³ and %MAR)										
Catagony	Low Flo	ws	Total	Flows						
Category	Mill. m ³	%MAR	Mill. m ³	%MAR						
А	20.716	17.8	33.593	28.8						
A/B	20.101	17.2	32.183	27.6						
В	19.615	16.8	30.918	26.5						
B/C	18.774	16.1	29.316	25.2						
С	17.865	15.3	27.664	23.7						
C/D	17.135	14.7	26.207	22.5						
D	16.397	14.1	24.759	21.2						

11.2.6 Flow duration and Reserve assurance tables

Columns	columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99		
Natural 7	Fotal flow c	luration cu	ırve (mill. r	n³)								
Oct	5.069	4.132	3.6	3.214	2.705	2.354	2.029	1.634	1.422	0.759		
Nov	11.375	6.84	6.165	5.202	4.725	3.86	3.284	2.344	1.865	1.01		
Dec	22.786	14.926	13.206	9.6	7.575	5.944	4.828	3.862	3.046	1.472		
Jan	47.618	32.53	20.208	15.414	12.48	9.05	7.482	5.968	4.046	2.655		
Feb	79.518	40.112	25.814	16.998	13.08	10.504	7.279	5.892	4.192	2.508		
Mar	56.06	36.64	26.479	16.958	11.33	8.528	7.162	5.346	4.065	2.711		
Apr	24.076	18.934	12.871	10.6	8.625	7.29	5.767	4.658	3.285	2.752		
May	10.152	7.96	6.798	6.224	5.83	5.118	4.222	3.614	2.893	2.148		
Jun	6.232	5.29	4.9	4.368	3.91	3.422	3.17	2.792	1.995	1.403		
Jul	5.011	4.066	3.657	3.398	3.19	2.858	2.613	2.384	1.812	1.222		
Aug	4.24	3.484	3.195	2.91	2.79	2.548	2.303	2.036	1.644	0.92		
Sep	4.035	3.638	3.089	2.658	2.435	2.224	1.793	1.612	1.281	0.805		
Natural I	Baseflow fl	ow duratio	on curve (m	nill. m³)								
Oct	3.78	3.036	2.876	2.484	2.336	2.026	1.754	1.523	1.321	0.744		
Nov	4.084	3.68	3.157	2.939	2.669	2.428	1.993	1.728	1.38	0.781		
Dec	5.102	4.565	3.892	3.682	3.299	2.963	2.688	2.193	1.766	0.963		
Jan	9.467	7.321	5.527	4.571	4.035	3.706	3.33	2.65	2.2	1.384		
Feb	15.97	9.131	6.679	5.358	4.4	4.063	3.722	3.252	2.362	1.646		
Mar	13.381	9.79	7.415	5.929	4.67	4.108	3.754	3.451	2.512	1.764		
Apr	11.256	8.345	6.569	5.79	4.955	4.12	3.659	3.331	2.545	1.818		
May	6.957	6.121	5.726	4.764	4.151	3.745	3.549	3.093	2.45	1.733		

Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99		
Jun	5.253	4.996	4.371	3.885	3.571	3.315	3.107	2.724	1.995	1.403		
Jul	4.745	3.96	3.614	3.284	3.087	2.714	2.593	2.372	1.812	1.222		
Aug	3.957	3.296	3.114	2.89	2.79	2.376	2.236	2.036	1.622	0.92		
Sep	3.573	3.096	2.806	2.61	2.415	2.18	1.793	1.612	1.281	0.805		
Category Low Flow Assurance curves (mill. m ³)												
A Category												
Oct	2.145	1.746	1.36	0.699	0.49	0.396	0.326	0.275	0.239	0.215		
Nov	2.277	1.993	1.484	0.98	0.669	0.569	0.422	0.335	0.266	0.24		
Dec	2.964	2.569	2.035	1.491	1.171	0.938	0.715	0.5	0.429	0.352		
Jan	4.704	4.035	3.129	2.266	1.87	1.521	1.087	0.757	0.629	0.514		
Feb	6.966	4.61	3.629	2.697	2.011	1.506	1.205	0.89	0.68	0.574		
Mar	5.991	5.653	4.683	3.651	2.693	1.913	1.39	1.068	0.833	0.685		
Apr	5.034	4.497	3.942	3.284	2.006	1.579	1.228	0.969	0.653	0.623		
May	3.792	3.51	3.257	2.477	1.994	1.598	1.232	0.935	0.762	0.624		
Jun	2.923	2.701	2.233	1.617	1.357	1.144	0.912	0.701	0.575	0.495		
Jul	2.699	2.248	1.781	1.22	0.991	0.8	0.675	0.572	0.483	0.383		
Aug	2.314	1.889	1.495	0.968	0.761	0.603	0.516	0.447	0.37	0.315		
Sep	1.769	1.673	1.46	0.803	0.525	0.432	0.337	0.296	0.29	0.241		
A/B Cate	gory											
Oct	2.102	1.723	1.313	0.616	0.469	0.373	0.303	0.252	0.216	0.192		
Nov	2.238	1.962	1.425	0.903	0.642	0.54	0.396	0.309	0.241	0.215		
Dec	2.915	2.528	1.962	1.4	1.127	0.895	0.679	0.466	0.393	0.318		
Jan	4.641	3.97	3.035	2.166	1.805	1.456	1.04	0.711	0.581	0.467		
Feb	6.868	4.536	3.534	2.606	1.943	1.443	1.157	0.841	0.631	0.524		
Mar	5.936	5.539	4.57	3.555	2.606	1.83	1.335	1.011	0.774	0.625		
Apr	4.972	4.425	3.841	3.188	1.935	1.512	1.177	0.916	0.601	0.566		
May	3.734	3.454	3.163	2.377	1.926	1.53	1.181	0.883	0.707	0.568		
Jun	2.875	2.658	2.157	1.527	1.309	1.094	0.87	0.659	0.531	0.449		
Jul	2.653	2.212	1.713	1.135	0.953	0.762	0.639	0.535	0.444	0.346		
Aug	2.273	1.859	1.435	0.89	0.73	0.573	0.486	0.415	0.338	0.283		
Sep	1.744	1.647	1.411	0.734	0.502	0.409	0.315	0.272	0.265	0.215		
B Catego	ory											
Oct	2.063	1.704	1.27	0.581	0.453	0.358	0.287	0.236	0.2	0.176		
Nov	2.202	1.935	1.376	0.852	0.622	0.519	0.377	0.291	0.224	0.198		
Dec	2.87	2.491	1.901	1.338	1.095	0.863	0.653	0.442	0.369	0.294		
Jan	4.581	3.907	2.955	2.092	1.755	1.408	1.005	0.68	0.549	0.435		
Feb	6.777	4.46	3.452	2.534	1.889	1.396	1.121	0.806	0.597	0.49		
Mar	5.882	5.431	4.478	3.473	2.535	1.768	1.294	0.97	0.733	0.585		
Apr	4.913	4.353	3.753	3.108	1.88	1.462	1.139	0.878	0.566	0.528		
May	3.68	3.401	3.082	2.301	1.873	1.48	1.144	0.846	0.669	0.53		
Jun	2.831	2.619	2.093	1.464	1.271	1.056	0.84	0.629	0.501	0.418		
Jul	2.612	2.181	1.657	1.078	0.925	0.735	0.614	0.508	0.418	0.321		
Aug	2.237	1.833	1.385	0.838	0.708	0.551	0.465	0.393	0.316	0.261		
Sep	1.721	1.623	1.371	0.689	0.486	0.392	0.299	0.256	0.248	0.198		
B/C Cate	gory											
Oct	2.021	1.674	1.162	0.55	0.42	0.323	0.252	0.2	0.162	0.138		
Nov	2.159	1.891	1.283	0.777	0.582	0.475	0.337	0.25	0.184	0.157		
Dec	2.816	2.436	1.791	1.245	1.033	0.8	0.596	0.387	0.312	0.239		
Jan	4.51	3.819	2.829	1.983	1.667	1.317	0.933	0.608	0.473	0.36		
Columns	Columns are FDC percentage points:											
----------	------------------------------------	-----------	-----------	-------------------------	-------	-------	-------	-------	-------	-------	--	--
	10	20	30	40	50	60	70	80	90	99		
Feb	6.669	4.36	3.336	2.427	1.797	1.306	1.047	0.729	0.518	0.409		
Mar	5.825	5.304	4.357	3.349	2.414	1.647	1.209	0.88	0.638	0.487		
Apr	4.844	4.256	3.628	2.989	1.784	1.366	1.061	0.793	0.482	0.436		
May	3.616	3.326	2.957	2.19	1.78	1.386	1.065	0.763	0.581	0.438		
Jun	2.778	2.561	1.982	1.37	1.203	0.984	0.775	0.561	0.431	0.343		
Jul	2.561	2.132	1.554	0.993	0.871	0.678	0.559	0.449	0.356	0.261		
Aug	2.192	1.792	1.291	0.763	0.663	0.505	0.418	0.342	0.265	0.209		
Sep	1.693	1.587	1.303	0.624	0.452	0.356	0.263	0.218	0.208	0.157		
C Catego	ory											
Oct	1.98	1.642	1.062	0.53	0.401	0.305	0.234	0.183	0.146	0.122		
Nov	2.1	1.843	1.199	0.734	0.552	0.446	0.312	0.228	0.164	0.138		
Dec	2.74	2.368	1.683	1.177	0.974	0.746	0.551	0.348	0.271	0.202		
Jan	4.398	3.689	2.681	1.877	1.564	1.221	0.859	0.543	0.403	0.294		
Feb	6.497	4.188	3.176	2.299	1.685	1.212	0.963	0.648	0.438	0.328		
Mar	5.716	5.081	4.163	3.169	2.254	1.529	1.111	0.779	0.536	0.384		
Apr	4.727	4.099	3.456	2.831	1.677	1.269	0.976	0.706	0.414	0.356		
May	3.521	3.221	2.804	2.073	1.67	1.284	0.98	0.678	0.491	0.357		
Jun	2.703	2.487	1.866	1.295	1.132	0.914	0.715	0.501	0.368	0.279		
Jul	2.492	2.076	1.456	0.939	0.822	0.633	0.517	0.403	0.307	0.219		
Aug	2.133	1.747	1.205	0.72	0.629	0.473	0.387	0.309	0.232	0.178		
Sep	1.651	1.542	1.232	0.592	0.431	0.335	0.244	0.199	0.179	0.136		
C/D Cate	gory											
Oct	1.939	1.602	0.961	0.509	0.382	0.287	0.217	0.166	0.129	0.106		
Nov	2.045	1.792	1.111	0.702	0.526	0.422	0.292	0.208	0.147	0.12		
Dec	2.667	2.299	1.574	1.127	0.93	0.709	0.52	0.322	0.244	0.178		
Jan	4.276	3.564	2.543	1.798	1.494	1.166	0.816	0.506	0.367	0.26		
Feb	6.314	4.029	3.038	2.203	1.609	1.157	0.917	0.607	0.4	0.291		
Mar	5.528	4.875	3.999	3.033	2.152	1.473	1.059	0.73	0.489	0.339		
Apr	4.59	3.952	3.306	2.714	1.601	1.212	0.929	0.661	0.375	0.315		
May	3.425	3.118	2.665	1.986	1.594	1.227	0.933	0.635	0.448	0.316		
Jun	2.631	2.413	1.753	1.241	1.08	0.872	0.678	0.467	0.335	0.246		
Jul	2.427	2.018	1.356	0.898	0.784	0.601	0.487	0.373	0.278	0.193		
Aug	2.077	1.7	1.116	0.689	0.599	0.448	0.362	0.285	0.208	0.156		
Sep	1.606	1.496	1.165	0.567	0.41	0.316	0.227	0.181	0.161	0.119		
D Catego	ory											
Oct	1.898	1.543	0.86	0.489	0.363	0.269	0.199	0.149	0.113	0.089		
Nov	1.995	1.736	1.019	0.674	0.501	0.399	0.271	0.189	0.129	0.102		
Dec	2.598	2.224	1.461	1.081	0.886	0.674	0.489	0.295	0.218	0.153		
Jan	4.142	3.436	2.404	1.722	1.425	1.114	0.773	0.469	0.331	0.226		
Feb	6.116	3.872	2.9	2.109	1.535	1.105	0.871	0.566	0.361	0.254		
Mar	5.316	4.67	3.835	2.9	2.057	1.416	1.007	0.681	0.443	0.294		
Apr	4.435	3.805	3.157	2.598	1.527	1.156	0.882	0.616	0.336	0.273		
May	3.328	3.012	2.523	1.902	1.521	1.173	0.885	0.591	0.405	0.274		
Jun	2.562	2.334	1.636	1.189	1.03	0.831	0.64	0.432	0.301	0.213		
Jul	2.365	1.954	1.252	0.861	0.747	0.57	0.457	0.343	0.249	0.166		
Aug	2.026	1.647	1.023	0.661	0.57	0.423	0.338	0.26	0.185	0.134		
Sep	1.557	1.445	1.096	0.544	0.39	0.297	0.209	0.164	0.143	0.102		
Category	Total Flov	v Assuran	ce curves	(mill. m ³)			I					
A Catego	ory											

Columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99	
Oct	2.145	1.746	1.36	0.699	0.49	0.396	0.326	0.275	0.239	0.215	
Nov	4.34	3.784	3.057	2.398	2.012	1.825	1.427	0.921	0.272	0.24	
Dec	6.462	5.606	4.703	3.896	3.449	3.069	2.421	1.494	0.439	0.352	
Jan	9.827	8.483	7.035	5.787	5.205	4.64	3.584	2.213	0.644	0.514	
Feb	11.883	8.88	7.379	6.077	5.212	4.501	3.602	2.287	0.694	0.574	
Mar	9.829	8.986	7.61	6.289	5.192	4.25	3.261	2.159	0.844	0.685	
Apr	7.046	6.245	5.477	4.668	3.317	2.805	2.209	1.541	0.659	0.623	
May	4.764	4.354	3.998	3.145	2.627	2.189	1.706	1.211	0.765	0.624	
Jun	2.923	2.701	2.233	1.617	1.357	1.144	0.912	0.701	0.575	0.495	
Jul	2.699	2.248	1.781	1.22	0.991	0.8	0.675	0.572	0.483	0.383	
Aug	2.314	1.889	1.495	0.968	0.761	0.603	0.516	0.447	0.37	0.315	
Sep	1.769	1.673	1.46	0.803	0.525	0.432	0.337	0.296	0.29	0.241	
A/B Cate	gory										
Oct	2.102	1.723	1.313	0.616	0.469	0.373	0.303	0.252	0.216	0.192	
Nov	4.173	3.642	2.9	2.233	1.902	1.718	1.339	0.859	0.247	0.215	
Dec	6.197	5.378	4.465	3.657	3.265	2.894	2.279	1.398	0.403	0.318	
Jan	9.446	8.143	6.7	5.47	4.935	4.383	3.383	2.077	0.596	0.467	
Feb	11.481	8.542	7.052	5.777	4.946	4.252	3.406	2.152	0.645	0.524	
Mar	9.537	8.666	7.316	6.03	4.95	4.023	3.09	2.034	0.785	0.625	
Apr	6.86	6.064	5.281	4.486	3.165	2.662	2.097	1.452	0.607	0.566	
May	4.645	4.245	3.858	3.003	2.52	2.085	1.626	1.142	0.71	0.568	
Jun	2.875	2.658	2.157	1.527	1.309	1.094	0.87	0.659	0.531	0.449	
Jul	2.653	2.212	1.713	1.135	0.953	0.762	0.639	0.535	0.444	0.346	
Aug	2.273	1.859	1.435	0.89	0.73	0.573	0.486	0.415	0.338	0.283	
Sep	1.744	1.647	1.411	0.734	0.502	0.409	0.315	0.272	0.265	0.215	
B Catego	ory										
Oct	2.063	1.704	1.27	0.581	0.453	0.358	0.287	0.236	0.2	0.176	
Nov	4.012	3.506	2.756	2.096	1.8	1.622	1.26	0.806	0.23	0.198	
Dec	5.941	5.158	4.243	3.449	3.094	2.733	2.15	1.314	0.378	0.294	
Jan	9.077	7.811	6.384	5.183	4.683	4.146	3.198	1.958	0.563	0.435	
Feb	11.092	8.208	6.743	5.501	4.699	4.024	3.225	2.033	0.61	0.49	
Mar	9.251	8.356	7.048	5.789	4.729	3.819	2.937	1.928	0.743	0.585	
Apr	6.68	5.887	5.1	4.323	3.031	2.537	2.001	1.38	0.571	0.528	
May	4.533	4.141	3.732	2.887	2.428	2	1.56	1.088	0.672	0.53	
Jun	2.831	2.619	2.093	1.464	1.271	1.056	0.84	0.629	0.501	0.418	
Jul	2.612	2.181	1.657	1.078	0.925	0.735	0.614	0.508	0.418	0.321	
Aug	2.237	1.833	1.385	0.838	0.708	0.551	0.465	0.393	0.316	0.261	
Sep	1.721	1.623	1.371	0.689	0.486	0.392	0.299	0.256	0.248	0.198	
B/C Cate	gory										
Oct	2.021	1.674	1.162	0.55	0.42	0.323	0.252	0.2	0.162	0.138	
Nov	3.847	3.357	2.571	1.938	1.681	1.504	1.16	0.73	0.19	0.157	
Dec	5.679	4.922	3.975	3.214	2.898	2.544	1.993	1.201	0.32	0.239	
Jan	8.704	7.461	6.028	4.866	4.397	3.87	2.977	1.8	0.486	0.36	
Feb	10.694	7.855	6.406	5.195	4.418	3.757	3.009	1.873	0.53	0.409	
Mar	8.967	8.033	6.754	5.509	4.46	3.56	2.741	1.773	0.647	0.487	
Apr	6.492	5.687	4.885	4.122	2.857	2.37	1.864	1.262	0.487	0.436	
May	4.411	4.016	3.563	2.736	2.298	1.87	1.453	0.989	0.583	0.438	
Jun	2.778	2.561	1.982	1.37	1.203	0.984	0.775	0.561	0.431	0.343	
Jul	2.561	2.132	1.554	0.993	0.871	0.678	0.559	0.449	0.356	0.261	

Columns	Columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99		
Aug	2.192	1.792	1.291	0.763	0.663	0.505	0.418	0.342	0.265	0.209		
Sep	1.693	1.587	1.303	0.624	0.452	0.356	0.263	0.218	0.208	0.157		
C Catego	ory											
Oct	1.98	1.642	1.062	0.53	0.401	0.305	0.234	0.183	0.146	0.122		
Nov	3.669	3.206	2.396	1.813	1.574	1.401	1.078	0.674	0.169	0.138		
Dec	5.402	4.68	3.713	3.008	2.707	2.367	1.849	1.105	0.279	0.202		
Jan	8.296	7.073	5.653	4.556	4.102	3.594	2.759	1.651	0.415	0.294		
Feb	10.238	7.436	6.03	4.871	4.121	3.491	2.787	1.711	0.449	0.328		
Mar	8.637	7.616	6.39	5.177	4.156	3.308	2.535	1.609	0.545	0.384		
Apr	6.258	5.428	4.623	3.884	2.674	2.202	1.723	1.141	0.419	0.356		
May	4.26	3.862	3.368	2.581	2.151	1.734	1.341	0.889	0.493	0.357		
Jun	2.703	2.487	1.866	1.295	1.132	0.914	0.715	0.501	0.368	0.279		
Jul	2.492	2.076	1.456	0.939	0.822	0.633	0.517	0.403	0.307	0.219		
Aug	2.133	1.747	1.205	0.72	0.629	0.473	0.387	0.309	0.232	0.178		
Sep	1.651	1.542	1.232	0.592	0.431	0.335	0.244	0.199	0.179	0.136		
C/D Cate	gory											
Oct	1.939	1.602	0.961	0.509	0.382	0.287	0.217	0.166	0.129	0.106		
Nov	3.498	3.054	2.219	1.701	1.472	1.307	1	0.621	0.151	0.12		
Dec	5.132	4.439	3.453	2.822	2.534	2.21	1.722	1.022	0.252	0.178		
Jan	7.884	6.697	5.296	4.279	3.843	3.363	2.575	1.531	0.378	0.26		
Feb	9.777	7.037	5.68	4.584	3.864	3.266	2.606	1.592	0.41	0.291		
Mar	8.232	7.223	6.061	4.892	3.913	3.119	2.377	1.499	0.498	0.339		
Apr	6.008	5.183	4.388	3.689	2.525	2.075	1.62	1.064	0.379	0.315		
May	4.11	3.712	3.187	2.457	2.04	1.643	1.266	0.829	0.45	0.316		
Jun	2.631	2.413	1.753	1.241	1.08	0.872	0.678	0.467	0.335	0.246		
Jul	2.427	2.018	1.356	0.898	0.784	0.601	0.487	0.373	0.278	0.193		
Aug	2.077	1.7	1.116	0.689	0.599	0.448	0.362	0.285	0.208	0.156		
Sep	1.606	1.496	1.165	0.567	0.41	0.316	0.227	0.181	0.161	0.119		
D Catego	ory											
Oct	1.898	1.543	0.86	0.489	0.363	0.269	0.199	0.149	0.113	0.089		
Nov	3.334	2.899	2.041	1.594	1.372	1.214	0.924	0.569	0.133	0.102		
Dec	4.869	4.197	3.194	2.642	2.365	2.058	1.597	0.941	0.225	0.153		
Jan	7.468	6.324	4.94	4.009	3.59	3.14	2.395	1.414	0.341	0.226		
Feb	9.309	6.644	5.335	4.304	3.614	3.049	2.428	1.473	0.371	0.254		
Mar	7.808	6.834	5.735	4.614	3.679	2.934	2.222	1.39	0.451	0.294		
Apr	5.742	4.94	4.153	3.497	2.378	1.952	1.519	0.987	0.34	0.273		
May	3.959	3.559	3.004	2.336	1.931	1.557	1.193	0.77	0.407	0.274		
Jun	2.562	2.334	1.636	1.189	1.03	0.831	0.64	0.432	0.301	0.213		
Jul	2.365	1.954	1.252	0.861	0.747	0.57	0.457	0.343	0.249	0.166		
Aug	2.026	1.647	1.023	0.661	0.57	0.423	0.338	0.26	0.185	0.134		
Sep	1.557	1.445	1.096	0.544	0.39	0.297	0.209	0.164	0.143	0.102		

11.3 EWR 3: PRIESKA

11.3.1 Hydrology data summary

Natural Flows:							Present Day Fl	ows:			
a (1 2)	MAR	Ann.s	SD	Q75	Ann. C	×۷	A (1 2)	MAR	Ann.SD	Q75	Ann. CV
Area (km.)	-	(m ³ * 10 ⁶	⁵)			Area (km.)	1	(m ³	* 10 ⁶)	
0.0	394.91	310.58	1	1.52	0.79		0	181.98	275.03	1.65	1.51
% Zero flows	0.0						% Zero flows	0.0			
Papaflow Para	motoro		A		0.96		Papaflow Para	motoro		А	0.96
Dasellow Para	meters.		В		0.44		basenow Para	meters.		В	0.44
BFI					0.46		BFI				0.25
Hydro Index					3.4		Hydro Index				11.5
MONTH		MEAN	SD	С	:v		MONTH	MEA	N SD	CV	
		(r	n ³ * 10 ⁶)			WONTH		(m ³ * 10	⁶)	
Oct		10.42	3.8	4	0.37		Oct	1.	94 1.	1 0.5	7
Nov		15.85	9.9	5	0.63		Nov	2	2.6 3.9	4 1.5	1
Dec		29.75	26.3	3	0.89		Dec	8.	02 18.6	1 2.3	2
Jan		57.31	61.9	6	1.08		Jan	27.	78 51.4	8 1.8	5
Feb		88.81	126.1	2	1.42		Feb	59.	18 119.	2 2.0	1
Mar		75.68	102.6	6	1.36		Mar	49.	17 98.	7 2.0	1
Apr		42.23	42.3	1	1		Apr	20.	55 37.4	6 1.8	2
May		22.63	10.2	5	0.45		May	5.	25 6.2	1 1.1	8
Jun		16.22	5.2	2	0.32		Jun	2.	57 2.8	3 1.	1
Jul		13.72	4.1	7	0.3		Jul	1.	81 1.5	8 0.8	7
Aug		11.92	3.6	9	0.31		Aug	1.	46 0.8	7 0.5	9
Sep		10.39	3.3	9	0.33		Sep	1.	65 0.6	8 0.4	1

Critical months:	Wet Season	Mar	Dry Season	Oct
Max. baseflows (m³/s)	6.329		3.573	

11.3.2 Hydraulics data summary

Geomorph. Zone	5
Flood Zone	3
Max. Channel width (m)	65.24
Max. Channel Depth (m)	2.23
Observed Channel XS used	
Observed Rating Curve used	
(Gradients and Roughness n values calibrated)	
Max. Gradient	0.005
Min. Gradient	0.004
Gradient Shape Factor	20
Max. Mannings n	0.13
Min. Mannings n	0.06
n Shape Factor	15

11.3.3 Flow - stressor response data summary

Table of initial SHIFT factors for the Stress Frequency Curves										
Category	High SHIFT	Low SHIFT								
A	0.6	0.1								
A/B	0.65	0.15								
В	0.68	0.2								
B/C	0.72	0.24								
С	0.75	0.28								
C/D	0.78	0.32								
D	0.8	0.36								
Perenniality Rules: All S	easons Perennial Forced									
Alignment of maximum s	stress to Present Day stress D	Category Aligned								
Table of flows (m³/s) v	stress index									
Stress	Wet Season Flow	Dry Season Flow								
011000	not ocacon i lon	Dry Deason riow								
0	6.454	3.622								
0 1	6.454 5.719	3.622 2.612								
0 1 2	6.454 5.719 5.139	3.622 2.612 2.13								
0 1 2 3	6.454 5.719 5.139 4.181	3.622 2.612 2.13 1.871								
0 1 2 3 4	6.454 5.719 5.139 4.181 2.034	3.622 2.612 2.13 1.871 1.622								
0 1 2 3 4 5	6.454 5.719 5.139 4.181 2.034 1.695	3.622 2.612 2.13 1.871 1.622 1.293								
0 1 2 3 4 5 6	6.454 5.719 5.139 4.181 2.034 1.695 1.356	3.622 2.612 2.13 1.871 1.622 1.293 1.028								
0 1 2 3 4 5 6 7	6.454 5.719 5.139 4.181 2.034 1.695 1.356 1.017	3.622 2.612 2.13 1.871 1.622 1.293 1.028 0.771								
0 1 2 3 4 5 6 7 8	6.454 5.719 5.139 4.181 2.034 1.695 1.356 1.017 0.678	3.622 2.612 2.13 1.871 1.622 1.293 1.028 0.771 0.514								
0 1 2 3 4 5 6 7 8 9	6.454 5.719 5.139 4.181 2.034 1.695 1.356 1.017 0.678 0.339	3.622 2.612 2.13 1.871 1.622 1.293 1.028 0.771 0.514 0.257								

11.3.4 High flow estimation summary details

No High flows	No High flows when natural high flows are < 25% of total flows												
Maximum high	Maximum high flows are 120% greater than normal high flows												
Table of normal high flow requirements (Mill. m ³)													
Category	Α	A/B	В	B/C	С	C/D	D						
Annual	39.84	37.829	35.821	33.814	31.81	29.807	27.806						
Oct	0	0	0	0	0	0	0						
Nov	1.638	1.555	1.473	1.39	1.308	1.225	1.143						
Dec	6.184	5.872	5.56	5.249	4.938	4.627	4.316						
Jan	8.959	8.507	8.055	7.604	7.153	6.703	6.253						
Feb	10.341	9.819	9.298	8.777	8.257	7.737	7.218						
Mar	7.65	7.264	6.878	6.493	6.108	5.724	5.339						
Apr	5.068	4.812	4.557	4.301	4.046	3.792	3.537						
May	0	0	0	0	0	0	0						
Jun	0	0	0	0	0	0	0						
Jul	0	0	0	0	0	0	0						
Aug	0	0	0	0	0	0	0						
Sep	0	0	0	0	0	0	0						

11.3.5 Final Reserve summary details

EWR Flows are NOT constrained to be below Natural or Present Day Flows										
Long term mean flow requirements (Mill. m ³ and %MAR)										
Low Flows Total Flows										
Category	Mill. m ³	%MAR	Mill. m ³	%MAR						
A	37.747	9.6	69.605	17.6						
A/B	35.04	8.9	65.29	16.5						
В	33.28	8.4	61.924	15.7						
B/C	31.544	8	58.584	14.8						
С	28.969	7.3	54.406	13.8						
C/D 26.354 6.7 50.189 12.7										
D	23.72	6	45.955	11.6						

11.3.6 Flow duration and Reserve assurance tables

Columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99	
Natural 1	Total flow c	duration cu	ırve (mill. ı	n ³)							
Oct	15.807	13.352	12.433	11.18	10.045	9.18	7.756	7.006	6.144	4.236	
Nov	26.03	20.65	18.573	15.228	13.6	12.022	11.086	8.668	7.091	4.487	
Dec	57.673	41.132	32.557	27.538	23.03	19.26	15.816	12.63	9.671	5.532	
Jan	133.056	91.53	62.855	43.638	33.73	27.78	20.944	18.506	13.696	7.656	
Feb	235.822	134.198	78.311	52.09	43.58	30.936	24.456	19.074	15.954	8.384	
Mar	198.703	111.932	77.652	53.34	38.725	29.87	21.875	17.464	14.645	9.07	
Apr	80.432	59.286	49.907	40.19	31.045	22.502	19.766	17.574	13.962	8.678	
May	36.918	30.794	26.701	24.226	20.69	17.952	15.703	14.462	11.716	6.89	
Jun	22.463	20.986	18.794	17.43	16.165	14.95	13.105	11.69	9.858	5.812	
Jul	19.737	16.912	15.817	14.764	13.845	12.65	11.307	10.066	8.773	5.311	
Aug	16.543	14.446	13.559	12.814	12.4	10.66	10.037	8.784	7.436	4.449	
Sep	14.627	12.984	12.238	11.49	10.605	9.12	8.319	7.184	6.462	4.036	
Natural E	Baseflow fl	ow duratio	n curve (n	nill. m³)							
Oct	14.11	12.345	11.329	10.221	9.463	8.412	7.68	6.94	5.892	4.047	
Nov	14.7	12.702	11.801	10.945	10.201	9.152	7.962	7.107	6.151	4.193	
Dec	17.417	15.675	14.627	12.701	11.456	10.944	9.704	8.435	7.075	4.707	
Jan	28.386	22.749	18.643	16.405	13.5	12.22	11.769	10.26	8.612	5.481	
Feb	54.065	30.449	22.448	17.846	15.474	14.167	12.648	11.636	9.028	5.859	
Mar	49.255	33.195	24.343	19.454	16.829	15.214	13.412	12.309	9.69	6.287	
Apr	36.129	26.912	21.584	19.74	16.74	15.037	13.71	11.601	9.477	6.636	
May	26.737	23.512	19.789	17.49	15.938	14.569	13.186	11.316	9.341	6.48	
Jun	21.459	19.063	17.583	15.571	14.656	13.306	12.247	10.608	8.992	5.756	
Jul	19.65	16.788	15.047	14.555	13.33	12.078	10.887	9.596	8.546	5.311	
Aug	16.476	14.386	13.431	12.686	11.79	10.452	9.744	8.784	7.436	4.449	
Sep	14.586	12.734	11.923	11.242	10.38	8.969	8.319	7.184	6.296	4.036	
Category	/ Low Flow	Assuranc	e curves (mill. m³)							
A Catego	ory										
Oct	2.926	1.915	1.429	1.15	0.974	0.857	0.775	0.717	0.674	0.645	
Nov	3.206	2.054	1.603	1.3	1.128	0.947	0.809	0.733	0.677	0.641	
Dec	4.057	3.155	2.988	1.907	1.506	1.318	1.076	0.882	0.785	0.742	
Jan	7.965	6.547	5.623	3.284	2.335	1.656	1.393	1.071	0.894	0.788	
Feb	12.876	10.296	7.627	3.759	2.694	1.958	1.439	1.081	0.852	0.769	
Mar	15.963	14.378	11.111	4.915	3.552	2.46	1.697	1.226	0.964	0.842	
Apr	11.621	10.307	8.09	3.964	2.924	2.324	1.55	1.175	0.978	0.924	

EWR Assessment: December 2013

Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99
May	7.283	7.214	6.69	3.935	3.129	2.257	1.643	1.179	0.97	0.885
Jun	5.167	4.799	4.622	2.923	2.53	1.885	1.453	1.07	0.895	0.792
Jul	4.637	3.654	3.408	2.551	2.143	1.61	1.266	1.006	0.89	0.78
Aug	3.781	2.684	2.432	1.897	1.628	1.246	1.08	0.907	0.813	0.734
Sep	3.147	2.041	1.641	1.368	1.157	0.947	0.837	0.743	0.693	0.645
A/B Cate	gory									
Oct	2.77	1.797	1.327	1.057	0.887	0.773	0.695	0.638	0.597	0.568
Nov	3.037	1.93	1.48	1.2	1.035	0.86	0.727	0.654	0.6	0.566
Dec	3.846	2.973	2.709	1.772	1.395	1.212	0.978	0.791	0.698	0.655
Jan	7.576	6.212	5.041	3.075	2.192	1.536	1.28	0.969	0.799	0.697
Feb	12.258	9.808	6.789	3.523	2.544	1.832	1.331	0.984	0.763	0.682
Mar	15.23	13.817	9.475	4.684	3.367	2.311	1.573	1.118	0.865	0.747
Apr	11.121	9.817	7.213	3.695	2.753	2.18	1.421	1.066	0.875	0.818
May	6.926	6.744	5.984	3.694	2.958	2.115	1.52	1.072	0.869	0.785
Jun	4.906	4.427	4.15	2.737	2.382	1.758	1.34	0.97	0.801	0.702
Jul	4.399	3.449	3.085	2.383	2.007	1.492	1.159	0.907	0.795	0.689
Aug	3.584	2.526	2.216	1.763	1.512	1.143	0.981	0.815	0.723	0.648
Sep	2.981	1.917	1.512	1.264	1.062	0.86	0.754	0.663	0.614	0.569
B Catego	ory									
Oct	2.671	1.709	1.245	0.978	0.81	0.697	0.62	0.564	0.523	0.495
Nov	2.93	1.839	1.386	1.119	0.955	0.783	0.652	0.579	0.526	0.493
Dec	3.717	2.847	2.518	1.676	1.305	1.122	0.89	0.707	0.615	0.571
Jan	7.364	5.997	4.667	2.958	2.086	1.438	1.183	0.876	0.708	0.609
Feb	11.934	9.508	6.252	3.407	2.44	1.735	1.24	0.897	0.678	0.597
Mar	14.927	13.398	8.502	4.547	3.244	2.2	1.471	1.021	0.771	0.654
Apr	10.855	9.522	6.668	3.557	2.631	2.073	1.308	0.967	0.777	0.716
May	6.727	6.483	5.537	3.568	2.84	2.007	1.416	0.976	0.774	0.687
Jun	4.752	4.192	3.843	2.627	2.275	1.658	1.244	0.879	0.712	0.614
Jul	4.256	3.308	2.87	2.276	1.904	1.395	1.066	0.817	0.704	0.602
Aug	3.462	2.414	2.065	1.667	1.419	1.054	0.894	0.729	0.638	0.565
Sep	2.876	1.827	1.415	1.181	0.982	0.783	0.677	0.588	0.539	0.496
B/C Cate	gory									
Oct	2.573	1.622	1.163	0.899	0.732	0.622	0.544	0.489	0.449	0.421
Nov	2.825	1.748	1.292	1.038	0.875	0.705	0.577	0.505	0.453	0.42
Dec	3.589	2.715	2.322	1.58	1.214	1.031	0.802	0.622	0.531	0.488
Jan	7.157	5.762	4.276	2.84	1.98	1.34	1.087	0.783	0.618	0.522
Feb	11.62	9.173	5.696	3.291	2.335	1.639	1.149	0.81	0.593	0.513
Mar	14.624	12.924	7.528	4.409	3.121	2.089	1.369	0.923	0.676	0.561
Apr	10.578	9.189	6.098	3.419	2.508	1.965	1.196	0.868	0.68	0.613
May	6.53	6.222	5.068	3.442	2.723	1.898	1.313	0.88	0.679	0.59
Jun	4.601	3.989	3.525	2.516	2.168	1.558	1.148	0.788	0.622	0.527
Jul	4.115	3.161	2.647	2.169	1.801	1.297	0.972	0.726	0.614	0.515
Aug	3.341	2.3	1.913	1.571	1.326	0.966	0.806	0.643	0.553	0.483
Sep	2.772	1.736	1.319	1.099	0.901	0.705	0.6	0.513	0.464	0.422
C Catego	ory									
Oct	2.422	1.504	1.061	0.806	0.645	0.538	0.464	0.41	0.371	0.345
Nov	2.66	1.621	1.167	0.939	0.782	0.618	0.495	0.426	0.375	0.345
Dec	3.384	2.506	2.015	1.456	1.103	0.925	0.704	0.531	0.444	0.402
Jan	6.792	5.312	3.606	2.665	1.837	1.219	0.974	0.681	0.523	0.431

Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99
Feb	11.047	8.463	4.734	3.106	2.185	1.513	1.04	0.714	0.504	0.425
Mar	14.027	12.017	5.84	4.178	2.936	1.94	1.245	0.815	0.577	0.466
Apr	9.979	8.473	5.079	3.212	2.337	1.822	1.067	0.759	0.577	0.507
May	6.184	5.728	4.252	3.245	2.551	1.756	1.189	0.773	0.578	0.49
Jun	4.347	3.673	2.994	2.355	2.02	1.431	1.035	0.688	0.528	0.437
Jul	3.885	2.917	2.29	2.02	1.665	1.179	0.865	0.628	0.519	0.425
Aug	3.149	2.126	1.686	1.447	1.21	0.863	0.708	0.55	0.463	0.397
Sep	2.61	1.61	1.191	0.998	0.807	0.618	0.517	0.433	0.385	0.346
C/D Cate	gory									
Oct	2.27	1.386	0.958	0.713	0.558	0.455	0.383	0.332	0.294	0.268
Nov	2.495	1.491	1.049	0.841	0.689	0.531	0.413	0.346	0.298	0.269
Dec	3.174	2.285	1.762	1.331	0.993	0.819	0.606	0.44	0.357	0.316
Jan	6.387	4.812	3.085	2.49	1.694	1.099	0.862	0.58	0.427	0.341
Feb	10.395	7.632	4.018	2.922	2.035	1.387	0.931	0.617	0.415	0.338
Mar	13.212	11.001	5.218	3.947	2.75	1.791	1.121	0.707	0.477	0.37
Apr	9.235	7.659	4.294	3.005	2.167	1.678	0.937	0.65	0.474	0.401
May	5.804	5.17	3.62	3.048	2.38	1.613	1.066	0.667	0.478	0.389
Jun	4.077	3.328	2.58	2.195	1.871	1.303	0.922	0.588	0.434	0.347
Jul	3.644	2.654	1.995	1.871	1.529	1.06	0.758	0.529	0.424	0.335
Aug	2.953	1.945	1.492	1.323	1.094	0.76	0.609	0.458	0.374	0.312
Sep	2.448	1.482	1.071	0.896	0.713	0.531	0.433	0.353	0.307	0.271
D Catego	ory				I					
Oct	2.119	1.267	0.856	0.62	0.471	0.371	0.302	0.253	0.217	0.192
Nov	2.329	1.359	0.939	0.743	0.596	0.444	0.331	0.267	0.221	0.194
Dec	2.956	2.038	1.58	1.207	0.882	0.713	0.509	0.349	0.27	0.23
Jan	5.918	4.177	2.762	2.315	1.551	0.979	0.749	0.478	0.332	0.25
Feb	9.616	6.515	3.634	2.738	1.885	1.261	0.823	0.52	0.326	0.251
Mar	12.225	8.97	4.939	3.717	2.565	1.642	0.997	0.599	0.378	0.275
Apr	8.366	6.59	3.83	2.797	1.996	1.535	0.808	0.541	0.371	0.295
May	5.376	4.469	3.242	2.85	2.209	1.471	0.942	0.56	0.377	0.289
Jun	3.787	2.916	2.316	2.034	1.723	1.176	0.809	0.488	0.34	0.256
Jul	3.391	2.352	1.787	1.722	1.393	0.942	0.651	0.431	0.329	0.246
Aug	2.753	1.75	1.339	1.199	0.978	0.657	0.511	0.365	0.284	0.227
Sep	2.285	1.351	0.96	0.795	0.619	0.444	0.35	0.273	0.228	0.195
Category	Total Flow	v Assuran	ce curves	(mill. m ³)						
A Catego	ory									
Oct	2.926	1.915	1.429	1.15	0.974	0.857	0.775	0.717	0.674	0.645
Nov	5.134	3.908	3.384	3.009	2.765	2.479	2.035	1.448	0.685	0.641
Dec	11.337	10.157	9.713	8.358	7.687	7.1	5.705	3.581	0.814	0.742
Jan	18.513	16.691	15.365	12.629	11.289	10.033	8.099	4.981	0.936	0.788
Feb	25.051	22.005	18.873	14.547	13.03	11.627	9.18	5.594	0.9	0.769
Mar	24.97	23.041	19.43	12.896	11.198	9.613	7.424	4.564	1	0.842
Apr	17.588	16.046	13.601	9.251	7.989	7.062	5.343	3.387	1.001	0.924
May	7.283	7.214	6.69	3.935	3.129	2.257	1.643	1.179	0.97	0.885
Jun	5.167	4.799	4.622	2.923	2.53	1.885	1.453	1.07	0.895	0.792
Jul	4.637	3.654	3.408	2.551	2.143	1.61	1.266	1.006	0.89	0.78
Aug	3.781	2.684	2.432	1.897	1.628	1.246	1.08	0.907	0.813	0.734
Sep	3.147	2.041	1.641	1.368	1.157	0.947	0.837	0.743	0.693	0.645
A/B Cate	gory									

Columns	Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99			
Oct	2.77	1.797	1.327	1.057	0.887	0.773	0.695	0.638	0.597	0.568			
Nov	4.868	3.691	3.171	2.822	2.589	2.314	1.892	1.333	0.607	0.566			
Dec	10.76	9.622	9.095	7.898	7.264	6.703	5.373	3.354	0.725	0.655			
Jan	17.592	15.844	14.292	11.95	10.694	9.49	7.648	4.682	0.838	0.697			
Feb	23.819	20.926	17.467	13.767	12.358	11.013	8.681	5.27	0.808	0.682			
Mar	23.783	22.042	17.375	12.262	10.627	9.103	7.011	4.288	0.899	0.747			
Apr	16.787	15.266	12.446	8.715	7.563	6.68	5.023	3.166	0.897	0.818			
May	6.926	6.744	5.984	3.694	2.958	2.115	1.52	1.072	0.869	0.785			
Jun	4.906	4.427	4.15	2.737	2.382	1.758	1.34	0.97	0.801	0.702			
Jul	4.399	3.449	3.085	2.383	2.007	1.492	1.159	0.907	0.795	0.689			
Aug	3.584	2.526	2.216	1.763	1.512	1.143	0.981	0.815	0.723	0.648			
Sep	2.981	1.917	1.512	1.264	1.062	0.86	0.754	0.663	0.614	0.569			
B Catego	ory												
Oct	2.671	1.709	1.245	0.978	0.81	0.697	0.62	0.564	0.523	0.495			
Nov	4.664	3.507	2.987	2.655	2.427	2.159	1.754	1.222	0.533	0.493			
Dec	10.263	9.142	8.565	7.476	6.862	6.321	5.052	3.133	0.64	0.571			
Jan	16.848	15.117	13.427	11.36	10.137	8.97	7.213	4.392	0.746	0.609			
Feb	22.881	20.036	16.364	13.106	11.733	10.429	8.2	4.955	0.721	0.597			
Mar	23.026	21.186	15.982	11.722	10.119	8.631	6.62	4.022	0.803	0.654			
Apr	16.22	14.681	11.624	8.311	7.185	6.333	4.719	2.956	0.799	0.716			
May	6.727	6.483	5.537	3.568	2.84	2.007	1.416	0.976	0.774	0.687			
Jun	4.752	4.192	3.843	2.627	2.275	1.658	1.244	0.879	0.712	0.614			
Jul	4.256	3.308	2.87	2.276	1.904	1.395	1.066	0.817	0.704	0.602			
Aug	3.462	2.414	2.065	1.667	1.419	1.054	0.894	0.729	0.638	0.565			
Sep	2.876	1.827	1.415	1.181	0.982	0.783	0.677	0.588	0.539	0.496			
B/C Cate	gory												
Oct	2.573	1.622	1.163	0.899	0.732	0.622	0.544	0.489	0.449	0.421			
Nov	4.461	3.322	2.803	2.488	2.265	2.005	1.617	1.111	0.459	0.42			
Dec	9.769	8.658	8.03	7.056	6.46	5.939	4.731	2.913	0.556	0.488			
Jan	16.11	14.372	12.546	10.772	9.58	8.449	6.779	4.102	0.653	0.522			
Feb	21.954	19.111	15.241	12.447	11.108	9.846	7.719	4.641	0.634	0.513			
Mar	22.269	20.276	14.589	11.182	9.611	8.16	6.229	3.757	0.706	0.561			
Apr	15.642	14.059	10.776	7.906	6.807	5.987	4.416	2.745	0.7	0.613			
May	6.53	6.222	5.068	3.442	2.723	1.898	1.313	0.88	0.679	0.59			
Jun	4.601	3.989	3.525	2.516	2.168	1.558	1.148	0.788	0.622	0.527			
Jul	4.115	3.161	2.647	2.169	1.801	1.297	0.972	0.726	0.614	0.515			
Aug	3.341	2.3	1.913	1.571	1.326	0.966	0.806	0.643	0.553	0.483			
Sep	2.772	1.736	1.319	1.099	0.901	0.705	0.6	0.513	0.464	0.422			
C Catego	ory												
Oct	2.422	1.504	1.061	0.806	0.645	0.538	0.464	0.41	0.371	0.345			
Nov	4.2	3.101	2.589	2.304	2.089	1.841	1.474	0.996	0.382	0.345			
Dec	9.198	8.097	7.385	6.607	6.038	5.542	4.4	2.686	0.467	0.402			
Jan	15.214	13.411	11.385	10.127	8.986	7.908	6.329	3.803	0.556	0.431			
Feb	20.768	17.812	13.713	11.72	10.437	9.233	7.221	4.317	0.543	0.425			
Mar	21.219	18.933	12.482	10.55	9.041	7.651	5.817	3.481	0.605	0.466			
Apr	14.744	13.054	9.479	7.433	6.382	5.605	4.096	2.525	0.596	0.507			
May	6.184	5.728	4.252	3.245	2.551	1.756	1.189	0.773	0.578	0.49			
Jun	4.347	3.673	2.994	2.355	2.02	1.431	1.035	0.688	0.528	0.437			
Jul	3.885	2.917	2.29	2.02	1.665	1.179	0.865	0.628	0.519	0.425			

Columns	are FDC p	ercentage	points:							
	10	20	30	40	50	60	70	80	90	99
Aug	3.149	2.126	1.686	1.447	1.21	0.863	0.708	0.55	0.463	0.397
Sep	2.61	1.61	1.191	0.998	0.807	0.618	0.517	0.433	0.385	0.346
C/D Cate	gory									
Oct	2.27	1.386	0.958	0.713	0.558	0.455	0.383	0.332	0.294	0.268
Nov	3.937	2.879	2.382	2.119	1.914	1.677	1.33	0.881	0.304	0.269
Dec	8.621	7.524	6.794	6.158	5.617	5.145	4.07	2.459	0.378	0.316
Jan	14.278	12.401	10.374	9.482	8.393	7.366	5.879	3.505	0.458	0.341
Feb	19.505	16.392	12.432	10.993	9.768	8.621	6.723	3.993	0.451	0.338
Mar	19.951	17.482	11.442	9.918	8.471	7.142	5.406	3.205	0.504	0.37
Apr	13.699	11.952	8.418	6.96	5.956	5.224	3.776	2.305	0.492	0.401
May	5.804	5.17	3.62	3.048	2.38	1.613	1.066	0.667	0.478	0.389
Jun	4.077	3.328	2.58	2.195	1.871	1.303	0.922	0.588	0.434	0.347
Jul	3.644	2.654	1.995	1.871	1.529	1.06	0.758	0.529	0.424	0.335
Aug	2.953	1.945	1.492	1.323	1.094	0.76	0.609	0.458	0.374	0.312
Sep	2.448	1.482	1.071	0.896	0.713	0.531	0.433	0.353	0.307	0.271
D Catego	ory									
Oct	2.119	1.267	0.856	0.62	0.471	0.371	0.302	0.253	0.217	0.192
Nov	3.675	2.654	2.182	1.935	1.739	1.513	1.187	0.766	0.226	0.194
Dec	8.038	6.925	6.274	5.709	5.196	4.749	3.739	2.233	0.29	0.23
Jan	13.28	11.257	9.562	8.838	7.801	6.825	5.43	3.207	0.361	0.25
Feb	18.113	14.688	11.483	10.267	9.099	8.01	6.226	3.67	0.359	0.251
Mar	18.512	15.016	10.746	9.287	7.901	6.634	4.994	2.929	0.403	0.275
Apr	12.53	10.595	7.677	6.487	5.531	4.842	3.456	2.085	0.388	0.295
May	5.376	4.469	3.2 <i>4</i> 2	2.85	2.209	1.471	0.942	0.56	0.377	0.289
Jun	3.787	2.916	2.316	2.034	1.723	1.176	0.809	0.488	0.34	0.256
Jul	3.391	2.352	1.787	1.722	1.393	0.942	0.651	0.431	0.329	0.246
Aug	2.753	1.75	1.339	1.199	0.978	0.657	0.511	0.365	0.284	0.227
Sep	2.285	1.351	0.96	0.795	0.619	0.444	0.35	0.273	0.228	0.195

11.4 EWR 4: LETABA RANCH

11.4.1 Hydrology data summary

Natural Flows:	:					Present Day F	lows:			
A rea (1/2)	MAR	Ann.SD	Q75	Ann. CV		A man a (lum ²)	MAR	Ann.SD	Q75	Ann. CV
Area (km.)		(m ³ *)		Area (Km.)	(m ³ * 10 ⁶)					
0.0	441.39	435.05	11.53	0.99]	0	217.92	403.03	1.55	1.85
% Zero flows	0.0				1	% Zero flows	0.0			
	<u>.</u>		A	0.96					A	0.96
Baseflow Para	meters:		В	0.44		Baseflow Para	meters:		В	0.44
BFI			-	0.44		BFI		0.25		
Hydro Index 4.				4.4		Hydro Index		12.1		
				-		•				

MONTH	MEAN	SD	CV		MONTH	MEAN	SD	C۷	
MONTH	(r	n ³ * 10 ⁶)			MONTH		(m ³ * 10 ⁶)		
Oct	10.48	3.93	0.38	C	Dct	1.6	0.91	0.57	
Nov	16.6	11.72	0.71	Λ	lov	2.2	4.64	2.11	
Dec	32.25	30.93	0.96	Ľ	Dec	8.3	21.63	2.61	
Jan	64.67	83.3	1.29	J	lan	32.68	71.9	2.2	
Feb	109.31	195.62	1.79	F	Feb	77.73	189.23	2.43	

Classification & RQO: Letaba Catchment

Nar	88.28	154.37	1.75	Mar	60.62	151.19	2.49
Apr	44.73	51.09	1.14	Apr	22.32	46.28	2.07
May	22.76	10.49	0.46	May	5.07	6.13	1.21
Jun	16.23	5.24	0.32	Jun	2.43	2.67	1.1
Jul	13.75	4.2	0.31	Jul	1.86	1.33	0.72
Aug	11.92	3.69	0.31	Aug	1.59	0.23	0.14
Sep	10.41	3.41	0.33	Sep	1.51	0.21	0.14

Critical months:	Wet Season	Mar	Dry Season	Oct
Max. baseflows (m³/s)	6.461		3.577	

11.4.2 Hydraulics data summary

Geomorph. Zone	5
Flood Zone	9
Max. Channel width (m)	177.52
Max. Channel Depth (m)	3.38

11.4.3 Flow - stressor response data summary

Table of initial SHIFT factors for the Stress Frequency Curves										
Category	High SHIFT	Low SHIFT								
A	0.1	0.02								
A/B	0.15	0.05								
В	0.2	0.1								
B/C	0.3	0.15								
С	0.4	0.2								
C/D	0.5	0.4								
D	0.6	0.6								
Perenniality Rules: All S	easons Perennial Forced									
Alignment of maximum stress to Present Day stress A Category Aligned										
Table of flows (m³/s) v	stress index									
Stress	Wet Season Flow	Dry Season Flow								
0	6.635	3.66								
1	3.042	3.006								
1 2	3.042 2.215	3.006 2.724								
1 2 3	3.042 2.215 1.938	3.006 2.724 2.232								
1 2 3 4	3.042 2.215 1.938 1.661	3.006 2.724 2.232 1.924								
1 2 3 4 5	3.042 2.215 1.938 1.661 1.385	3.006 2.724 2.232 1.924 1.468								
1 2 3 4 5 6	3.042 2.215 1.938 1.661 1.385 1.108	3.006 2.724 2.232 1.924 1.468 1.223								
1 2 3 4 5 6 7	3.042 2.215 1.938 1.661 1.385 1.108 0.831	3.006 2.724 2.232 1.924 1.468 1.223 0.917								
1 2 3 4 5 6 7 8	3.042 2.215 1.938 1.661 1.385 1.108 0.831 0.554	3.006 2.724 2.232 1.924 1.468 1.223 0.917 0.612								
1 2 3 4 5 6 7 8 9	3.042 2.215 1.938 1.661 1.385 1.108 0.831 0.554 0.277	3.006 2.724 2.232 1.924 1.468 1.223 0.917 0.612 0.306								

11.4.4 High flow estimation summary details

No High flows w	No High flows when natural high flows are < 20% of total flows												
Maximum high flows are 160% greater than normal high flows													
Table of normal high flow requirements (Mill. m ³)													
Category	Category A A/B B B/C C C/D D												
Annual	66.807	62.022	57.42	52.996	48.743	44.656	40.73						
Oct	0	0	0	0	0	0	0						

No High flows when natural high flows are < 20% of total flows													
Maximum high flows are 160% greater than normal high flows													
Table of normal high flow requirements (Mill. m ³)													
Category	A	A/B	В	B/C	С	C/D	D						
Nov	2.286	2.122	1.964	1.813	1.668	1.528	1.393						
Dec	11.476	10.654	9.864	9.103	8.373	7.671	6.997						
Jan		13.165	12.189	11.249	10.347	9.479	8.646						
Feb	16.008	14.861	13.759	12.698	11.679	10.7	9.76						
Mar	13.025	12.092	11.195	10.332	9.503	8.706	7.941						
Apr	7.913	7.346	6.801	6.277	5.773	5.289	4.824						
May	1.919	1.782	1.649	1.522	1.4	1.283	1.17						
Jun	0	0	0	0	0	0	0						
Jul	0	0	0	0	0	0	0						
Aug	0	0	0	0	0	0	0						
Sep	0	0	0	0	0	0	0						

11.4.5 Final Reserve summary details

EWR Flows are NOT constrained to be below Natural or Present Day Flows										
Long term mean flow requirements (Mill. m ³ and %MAR)										
Cotogony	Low Flor	Total Flows								
Calegory	Mill. m ³	%MAR	Mill. m ³	%MAR						
A	52.057	11.8	108.604	24.6						
A/B	48.141	10.9	100.638	22.8						
В	43.391	9.8	91.993	20.8						
B/C	39.887	9	84.744	19.2						
С	36.629	8.3	77.886	17.6						
C/D	26.642	6	64.44	14.6						
D	17.34	3.9	51.816	11.7						

11.4.6 Flow duration and Reserve assurance tables

Column	s are FDC p	ercentage	points:							
	10	20	30	40	50	60	70	80	90	99
Natural	Total flow c	luration cu	rve (mill. r	n³)						
Oct	16.448	13.352	12.457	11.342	10.045	9.18	7.756	7.006	6.144	4.236
Nov	28.063	21.974	18.6	15.504	13.835	12.34	11.158	8.668	7.091	4.497
Dec	63.429	43.002	35.938	29.78	25.325	19.592	15.888	12.682	9.68	5.542
Jan	152.541	101.168	67.429	46.104	35.63	28.474	21.974	18.84	13.696	8.184
Feb	286.945	143.83	91.771	58.092	44.61	32.696	24.582	19.076	15.956	8.384
Mar	226.581	120.224	84.283	53.362	40.995	30.102	21.882	17.472	14.645	9.079
Apr	84.171	60.166	51.492	40.216	31.065	22.618	19.773	17.576	13.962	8.678
May	36.947	30.818	26.753	24.238	20.7	17.972	15.703	14.462	11.716	6.89
Jun	22.535	21.042	18.818	17.448	16.195	14.956	13.105	11.69	9.858	5.812
Jul	19.815	16.938	15.833	14.786	13.865	12.662	11.324	10.068	8.773	5.311
Aug	16.543	14.446	13.559	12.814	12.4	10.66	10.037	8.784	7.436	4.449
Sep	14.679	13.024	12.238	11.49	10.605	9.12	8.319	7.184	6.462	4.036
Natural	Baseflow fl	ow duratio	n curve (m	nill. m³)						
Oct	14.11	12.348	11.357	10.221	9.576	8.412	7.691	6.94	5.892	4.047
Nov	14.756	12.978	11.904	10.979	10.529	9.156	7.97	7.107	6.162	4.193
Dec	17.736	16.069	14.871	12.704	11.539	11.002	10.024	8.638	7.232	4.709
Jan	30.113	23.294	18.965	17.018	14.016	12.428	11.955	10.397	8.743	5.481
Feb	58.73	32.733	23.653	18.554	16.196	14.495	12.819	12.013	9.116	5.972

Columns	Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99			
Mar	50.871	35.333	26.732	19.562	17.223	15.605	13.529	12.374	9.696	6.612			
Apr	39.584	28.489	23.53	20.711	17.057	15.509	13.769	11.65	9.55	6.936			
May	27.054	24.407	20.707	18.335	15.997	14.816	13.407	11.405	9.363	6.769			
Jun	21.783	19.324	17.734	15.894	14.895	13.378	12.434	10.79	9.059	5.764			
Jul	19.681	16.85	15.286	14.652	13.505	12.091	10.887	9.646	8.629	5.311			
Aug	16.476	14.386	13.431	12.686	11.79	10.514	9.744	8.784	7.436	4.449			
Sep	14.613	12.735	11.923	11.242	10.445	8.986	8.319	7.184	6.462	4.036			
Category	Low Flow	Assuranc	e curves (mill. m³)									
A Catego	ory												
Oct	7.368	5.483	3.896	3.095	2.362	1.813	1.41	1.117	0.907	0.769			
Nov	7.511	5.522	4.026	3.187	2.495	1.871	1.417	1.114	0.896	0.768			
Dec	8.975	6.783	4.903	3.735	2.864	2.218	1.636	1.217	0.944	0.812			
Jan	12.867	8.882	5.932	4.655	3.421	2.418	1.748	1.219	0.902	0.801			
Feb	20.413	9.661	6.061	4.603	3.491	2.426	1.609	1.063	0.807	0.7			
Mar	14.127	10.678	7.03	5.347	4.095	2.81	1.776	1.124	0.803	0.687			
Apr	13.758	9.732	6.468	5.609	4.025	2.726	2.048	1.202	1.004	0.922			
May	12.071	8.979	6.185	4.957	3.855	2.716	1.893	1.186	0.866	0.821			
Jun	9.978	7.512	5.403	4.324	3.466	2.486	1.716	1.172	0.852	0.748			
Jul	9.502	7.015	5.094	4.165	3.264	2.383	1.7	1.225	0.913	0.808			
Aug	8.386	6.223	4.599	3.717	2.91	2.146	1.618	1.216	0.944	0.814			
Sep	7.367	5.47	4.034	3.231	2.49	1.869	1.435	1.118	0.9	0.745			
A/B Cate	gory		I		I								
Oct	7.08	5.295	3.766	2.953	2.235	1.698	1.303	1.016	0.81	0.676			
Nov	7.235	5.291	3.839	3.05	2.366	1.755	1.311	1.015	0.802	0.676			
Dec	8.579	6.39	4.654	3.58	2.723	2.091	1.523	1.112	0.847	0.717			
Jan	11.809	7.941	5.584	4.482	3.271	2.288	1.637	1.12	0.811	0.709			
Feb	18.473	7.847	5.641	4.442	3.353	2.311	1.514	0.981	0.727	0.622			
Mar	11.279	8.093	6.43	5.167	3.944	2.687	1.676	1.039	0.725	0.611			
Apr	12.097	8.199	6.032	5.392	3.864	2.602	1.914	1.108	0.894	0.817			
May	11.211	8.004	5.806	4.78	3.702	2.589	1.779	1.094	0.781	0.729			
Jun	9.437	6.936	5.102	4.159	3.319	2.361	1.611	1.078	0.767	0.664			
Jul	9.051	6.58	4.831	4.001	3.116	2.253	1.587	1.123	0.821	0.714			
Aug	8.048	5.918	4.376	3.563	2.768	2.02	1.505	1.111	0.847	0.718			
Sep	7.102	5.246	3.847	3.092	2.361	1.754	1.329	1.019	0.806	0.657			
B Catego	ory		1		1								
Oct	6.515	4.929	3.573	2.752	2.066	1.552	1.174	0.9	0.703	0.575			
Nov	6.74	4.944	3.601	2.848	2.192	1.608	1.184	0.901	0.697	0.577			
Dec	7.921	5.919	4.334	3.35	2.53	1.926	1.384	0.991	0.739	0.615			
Jan	10.331	7.15	5.129	4.215	3.057	2.118	1.501	1.006	0.713	0.611			
Feb	15.867	6.658	5.075	4.19	3.15	2.153	1.395	0.888	0.641	0.54			
Mar	7.779	7.038	5.772	4.882	3.714	2.515	1.55	0.942	0.643	0.534			
Apr	9.975	7.121	5.459	5.062	3.627	2.431	1.75	1.001	0.775	0.706			
May	9.989	7.202	5.31	4.504	3.477	2.414	1.637	0.988	0.691	0.632			
Jun	8.605	6.36	4.718	3.907	3.108	2.193	1.481	0.97	0.676	0.575			
Jul	8.319	6.082	4.492	3.752	2.908	2.083	1.448	1.005	0.721	0.615			
Aug	7.464	5.508	4.089	3.334	2.574	1.858	1.367	0.99	0.74	0.616			
Sep	6.622	4.903	3.608	2.888	2.187	1.607	1.2	0.904	0.701	0.562			
B/C Cate	gory												
Oct	5.961	4.495	3.38	2.552	1.897	1.407	1.046	0.784	0.596	0.474			

Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99		
Nov	6.214	4.564	3.395	2.644	2.018	1.461	1.057	0.786	0.592	0.478		
Dec	7.288	5.439	4.084	3.118	2.338	1.761	1.246	0.871	0.631	0.513		
Jan	9.396	6.468	4.823	3.946	2.844	1.947	1.365	0.893	0.616	0.514		
Feb	14.357	5.911	4.755	3.937	2.946	1.996	1.276	0.795	0.556	0.459		
Mar	6.689	5.99	5.445	4.597	3.485	2.343	1.424	0.846	0.56	0.457		
Apr	8.943	6.311	5.124	4.732	3.391	2.26	1.58	0.894	0.656	0.595		
May	9.117	6.51	4.992	4.228	3.252	2.239	1.495	0.883	0.6	0.536		
Jun	7.894	5.811	4.442	3.654	2.897	2.025	1.351	0.862	0.586	0.486		
Jul	7.646	5.582	4.231	3.501	2.699	1.913	1.31	0.887	0.621	0.515		
Aug	6.875	5.074	3.854	3.102	2.379	1.696	1.229	0.87	0.633	0.513		
Sep	6.106	4.527	3.402	2.682	2.013	1.46	1.072	0.79	0.596	0.467		
C Catego	ory		I	I	I	I						
Oct	5.608	4.063	3.165	2.352	1.728	1.261	0.918	0.668	0.489	0.372		
Nov	5.747	4.172	3.183	2.44	1.844	1.314	0.929	0.672	0.487	0.379		
Dec	6.731	4.976	3.83	2.886	2.145	1.596	1.107	0.75	0.523	0.411		
Jan	8.598	5.93	4.528	3.678	2.63	1.776	1.229	0.78	0.518	0.416		
Feb	13.101	5.54	4.465	3.684	2.743	1.839	1.157	0.702	0.47	0.378		
Mar	5.822	5.597	5.117	4.312	3.256	2.171	1.299	0.749	0.478	0.38		
Apr	8.091	5.801	4.811	4.401	3.154	2.09	1.421	0.787	0.541	0.484		
May	8.369	5.972	4.688	3.951	3.027	2.064	1.354	0.778	0.51	0.439		
Jun	7.276	5.321	4.169	3.401	2.686	1.857	1.221	0.754	0.495	0.397		
Jul	7.057	5.108	3.97	3.251	2.491	1.743	1.171	0.77	0.521	0.416		
Auq	6.354	4.641	3.615	2.871	2.184	1.534	1.091	0.749	0.526	0.41		
Sep	5.649	4.139	3.19	2.476	1.84	1.313	0.944	0.675	0.491	0.371		
C/D Cate	gory											
Oct	3.866	3.11	2.337	1.718	1.243	0.888	0.627	0.437	0.301	0.212		
Nov	4.027	3.121	2.362	1.786	1.334	0.931	0.639	0.444	0.304	0.221		
Dec	4.725	3.723	2.847	2.122	1.563	1.15	0.783	0.512	0.342	0.256		
Jan	6.096	4.438	3.376	2.735	1.943	1.297	0.899	0.56	0.366	0.275		
Feb	9.307	4.172	3.339	2.755	2.049	1.368	0.862	0.525	0.341	0.272		
Mar	4.366	4.199	3.839	3.237	2.446	1.634	0.981	0.57	0.367	0.293		
Apr	5.813	4.349	3.596	3.262	2.353	1.564	1.027	0.582	0.389	0.327		
May	5.914	4.467	3.499	2.949	2.26	1.538	1.003	0.576	0.379	0.311		
Jun	5.119	3.981	3.105	2.523	1.992	1.369	0.901	0.545	0.358	0.277		
Jul	4.957	3.821	2.952	2.403	1.833	1.268	0.842	0.539	0.364	0.271		
Aug	4.456	3.472	2.685	2.111	1.593	1.1	0.769	0.511	0.346	0.253		
Sep	3.957	3.096	2.367	1.813	1.331	0.93	0.651	0.446	0.308	0.221		
D Catego	ory											
Oct	2.657	2.039	1.508	1.084	0.759	0.515	0.336	0.206	0.112	0.051		
Nov	2.728	2.053	1.527	1.133	0.824	0.548	0.348	0.215	0.12	0.062		
Dec	3.199	2.451	1.849	1.359	0.981	0.703	0.459	0.273	0.16	0.101		
Jan	4.119	2.932	2.211	1.791	1.255	0.817	0.569	0.34	0.214	0.135		
Feb	6.288	2.762	2.212	1.827	1.354	0.897	0.566	0.347	0.213	0.168		
Mar	2.911	2.8	2.561	2.161	1.636	1.097	0.664	0.391	0.256	0.207		
Apr	3.915	2.884	2.374	2.122	1.552	1.039	0.633	0.377	0.238	0.178		
Mav	3.999	2.953	2.299	1.948	1.493	1.012	0.652	0.375	0.248	0.183		
, Jun	3.465	2.625	2.028	1.644	1.299	0.881	0.58	0.337	0.221	0.156		
Jul	3.356	2.517	1.92	1.554	1.175	0.793	0.512	0.309	0.206	0.125		
Aug	3.018	2.284	1.74	1.351	1.002	0.666	0.447	0.273	0.167	0.096		

Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99		
Sep	2.681	2.036	1.53	1.151	0.822	0.547	0.358	0.218	0.125	0.071		
Category	v Total Flow	v Assuran	ce curves ((mill. m ³)								
A Catego	ory											
Oct	7.368	5.483	3.896	3.095	2.362	1.813	1.41	1.117	0.907	0.769		
Nov	10.818	8.304	6.492	5.506	4.777	4.008	3.127	2.112	0.906	0.768		
Dec	25.579	20.755	17.287	15.379	14.324	12.949	10.227	6.225	0.998	0.812		
Jan	33.385	26.147	21.235	19.044	17.583	15.677	12.363	7.407	0.967	0.801		
Feb	43.574	29.15	23.335	20.845	19.477	17.394	13.592	8.048	0.881	0.7		
Mar	32.972	26.535	21.086	18.562	17.103	14.988	11.525	6.808	0.864	0.687		
Apr	25.206	19.365	15.007	13.638	11.928	10.125	7.971	4.655	1.041	0.922		
May	14.847	11.316	8.256	6.904	5.771	4.511	3.329	2.023	0.875	0.821		
Jun	9.978	7.512	5.403	4.324	3.466	2.486	1.716	1.172	0.852	0.748		
Jul	9.502	7.015	5.094	4.165	3.264	2.383	1.7	1.225	0.913	0.808		
Aug	8.386	6.223	4.599	3.717	2.91	2.146	1.618	1.216	0.944	0.814		
Sep	7.367	5.47	4.034	3.231	2.49	1.869	1.435	1.118	0.9	0.745		
A/B Cate	gory											
Oct	7.08	5.295	3.766	2.953	2.235	1.698	1.303	1.016	0.81	0.676		
Nov	10.305	7.874	6.129	5.203	4.485	3.739	2.899	1.941	0.811	0.676		
Dec	23.994	19.361	16.151	14.39	13.363	12.053	9.498	5.762	0.896	0.717		
Jan	30.858	23.969	19.791	17.84	16.419	14.598	11.493	6.865	0.872	0.709		
Feb	39.975	25.941	21.678	19.521	18.194	16.206	12.639	7.466	0.796	0.622		
Mar	28.774	22.814	19.479	17.436	16.019	13.993	10.727	6.316	0.781	0.611		
Apr	22.726	17.143	13.959	12.846	11.2	9.471	7.413	4.314	0.928	0.817		
May	13.788	10.173	7.728	6.588	5.481	4.254	3.112	1.871	0.789	0.729		
Jun	9.437	6.936	5.102	4.159	3.319	2.361	1.611	1.078	0.767	0.664		
Jul	9.051	6.58	4.831	4.001	3.116	2.253	1.587	1.123	0.821	0.714		
Aug	8.048	5.918	4.376	3.563	2.768	2.02	1.505	1.111	0.847	0.718		
Sep	7.102	5.246	3.847	3.092	2.361	1.754	1.329	1.019	0.806	0.657		
B Catego	ory											
Oct	6.515	4.929	3.573	2.752	2.066	1.552	1.174	0.9	0.703	0.575		
Nov	9.582	7.335	5.721	4.841	4.153	3.445	2.654	1.758	0.706	0.577		
Dec	22.192	17.928	14.978	13.357	12.381	11.149	8.768	5.296	0.785	0.615		
Jan	27.966	21.99	18.282	16.581	15.23	13.514	10.625	6.325	0.77	0.611		
Feb	35.774	23.409	19.922	18.15	16.89	15.018	11.694	6.892	0.705	0.54		
Mar	23.976	20.668	17.853	16.241	14.894	12.982	9.93	5.828	0.695	0.534		
Apr	19.815	15.401	12.798	11.963	10.419	8.79	6.841	3.969	0.806	0.706		
May	12.376	9.21	7.09	6.178	5.124	3.956	2.872	1.708	0.698	0.632		
Jun	8.605	6.36	4.718	3.907	3.108	2.193	1.481	0.97	0.676	0.575		
Jul	8.319	6.082	4.492	3.752	2.908	2.083	1.448	1.005	0.721	0.615		
Aug	7.464	5.508	4.089	3.334	2.574	1.858	1.367	0.99	0.74	0.616		
Sep	6.622	4.903	3.608	2.888	2.187	1.607	1.2	0.904	0.701	0.562		
B/C Cate	gory											
Oct	5.961	4.495	3.38	2.552	1.897	1.407	1.046	0.784	0.596	0.474		
Nov	8.837	6.771	5.351	4.483	3.828	3.156	2.414	1.578	0.6	0.478		
Dec	20.46	16.522	13.907	12.354	11.429	10.273	8.06	4.844	0.673	0.513		
Jan	25.672	20.164	16.963	15.36	14.078	12.465	9.786	5.802	0.668	0.514		
Feb	32.73	21.371	18.458	16.821	15.628	13.869	10.782	6.337	0.614	0.459		
Mar	21.639	18.569	16.594	15.08	13.803	12.004	9.158	5.355	0.608	0.457		
Apr	18.024	13.953	11.898	11.1	9.659	8.13	6.284	3.633	0.685	0.595		

Columns are FDC percentage points:												
	10	20	30	40	50	60	70	80	90	99		
May	11.319	8.363	6.635	5.772	4.772	3.662	2.635	1.547	0.607	0.536		
Jun	7.894	5.811	4.442	3.654	2.897	2.025	1.351	0.862	0.586	0.486		
Jul	7.646	5.582	4.231	3.501	2.699	1.913	1.31	0.887	0.621	0.515		
Aug	6.875	5.074	3.854	3.102	2.379	1.696	1.229	0.87	0.633	0.513		
Sep	6.106	4.527	3.402	2.682	2.013	1.46	1.072	0.79	0.596	0.467		
C Catego	ory											
Oct	5.608	4.063	3.165	2.352	1.728	1.261	0.918	0.668	0.489	0.372		
Nov	8.16	6.202	4.982	4.132	3.509	2.873	2.178	1.4	0.495	0.379		
Dec	18.846	15.17	12.866	11.381	10.507	9.425	7.375	4.404	0.562	0.411		
Jan	23.568	18.527	15.693	14.176	12.963	11.45	8.974	5.295	0.566	0.416		
Feb	29.999	19.76	17.069	15.534	14.407	12.759	9.9	5.799	0.524	0.378		
Mar	19.571	17.167	15.372	13.954	12.746	11.057	8.412	4.896	0.522	0.38		
Apr	16.444	12.83	11.041	10.259	8.92	7.488	5.743	3.306	0.567	0.484		
May	10.395	7.677	6.198	5.372	4.425	3.374	2.402	1.389	0.516	0.439		
Jun	7.276	5.321	4.169	3.401	2.686	1.857	1.221	0.754	0.495	0.397		
Jul	7.057	5.108	3.97	3.251	2.491	1.743	1.171	0.77	0.521	0.416		
Aug	6.354	4.641	3.615	2.871	2.184	1.534	1.091	0.749	0.526	0.41		
Sep	5.649	4.139	3.19	2.476	1.84	1.313	0.944	0.675	0.491	0.371		
C/D Cate	gory											
Oct	3.866	3.11	2.337	1.718	1.243	0.888	0.627	0.437	0.301	0.212		
Nov	6.238	4.981	4.011	3.336	2.86	2.36	1.783	1.11	0.311	0.221		
Dec	15.824	13.062	11.125	9.905	9.223	8.322	6.525	3.859	0.377	0.256		
Jan	19.811	15.978	13.605	12.352	11.409	10.16	7.995	4.696	0.41	0.275		
Feb	24.789	17.2	14.886	13.612	12.734	11.373	8.872	5.194	0.391	0.272		
Mar	16.963	14.798	13.234	12.07	11.141	9.775	7.498	4.369	0.408	0.293		
Apr	13.465	10.788	9.304	8.628	7.635	6.51	4.986	2.89	0.414	0.327		
May	7.77	6.029	4.883	4.251	3.541	2.738	1.963	1.136	0.385	0.311		
Jun	5.119	3.981	3.105	2.523	1.992	1.369	0.901	0.545	0.358	0.277		
Jul	4.957	3.821	2.952	2.403	1.833	1.268	0.842	0.539	0.364	0.271		
Aug	4.456	3.472	2.685	2.111	1.593	1.1	0.769	0.511	0.346	0.253		
Sep	3.957	3.096	2.367	1.813	1.331	0.93	0.651	0.446	0.308	0.221		
D Catego	ory											
Oct	2.657	2.039	1.508	1.084	0.759	0.515	0.336	0.206	0.112	0.051		
Nov	4.744	3.749	3.03	2.546	2.215	1.851	1.392	0.823	0.126	0.062		
Dec	13.322	10.969	9.399	8.458	7.968	7.245	5.696	3.327	0.192	0.101		
Jan	16.628	13.458	11.541	10.563	9.889	8.901	7.041	4.113	0.254	0.135		
Feb	20.409	14.644	12.743	11.729	11.101	10.023	7.872	4.606	0.258	0.168		
Mar	14.401	12.468	11.13	10.218	9.567	8.522	6.608	3.856	0.293	0.207		
Apr	10.895	8.757	7.58	7.017	6.369	5.55	4.244	2.482	0.26	0.178		
May	5.691	4.377	3.561	3.135	2.662	2.106	1.528	0.886	0.253	0.183		
Jun	3.465	2.625	2.028	1.644	1.299	0.881	0.58	0.337	0.221	0.156		
Jul	3.356	2.517	1.92	1.554	1.175	0.793	0.512	0.309	0.206	0.125		
Aug	3.018	2.284	1.74	1.351	1.002	0.666	0.447	0.273	0.167	0.096		
Sep	2.681	2.036	1.53	1.151	0.822	0.547	0.358	0.218	0.125	0.071		

11.5 EWR 5: KLEIN LETABA

11.5.1 Hydrology data summary

Natural Flows:						Present Day F	lows:				
4 (1 2)	MAR	Ann.S	SD C	75 An	n. CV	a (1 2)	MAR	Ann.SD	Q75	Ann. CV	
Area (km.)		(1	m ³ * 10 ⁶)			Area (Km.)		(m ³ ,	[•] 10 ⁶)		
0.0	124.18	200	2.1	2 1.61	1	0	67.08	187.08	0.05	2.79	
% Zero flows	0.0					% Zero flows	0.0				
Depetlow Dere	motoro		A	0.96	6	A 0.9					
Dasellow Para	meters.		В	0.44	ţ	basenow Para	meters.		В	0.44	
BFI				0.42	2	BFI	0.2				
Hydro Index δ				8.3		Hydro Index 30.6					
MONTH	MEAN		SD	CV		MONTH	MEAN	N SD	CV		
		(n	n ³ * 10 ⁶)			MONTH	(m ³ * 10 ⁶)				
Oct		3.02	1.96	0.65	5	Oct	0.	12 0.2	4 1.9	6	
Nov		4.77	6.11	1.28	ł	Nov	0.9	93 2.2	9 2.4	6	
Dec		7.57	12.13	1.6	;	Dec	2.3	37 7.0	5 2.98	8	
Jan		24.19	63.57	2.63	1	Jan	15.0	63 59.8	1 3.8	3	
Feb		31.2	96.11	3.08	1	Feb	23.8	95.1	8 3.98	8	
Mar		25.53	76.22	2.99)	Mar	18.0	69.9	3 3.74	4	
Apr		9.06	17.33	1.91		Apr 4.38 16.52		2 3.7	7		
May		4.38	2.96	0.68	1	May 0.43 1.09		9 2.5	3		
Jun		3.97	2.48	0.62		Jun	Jun 0.23 0.55		5 2.3	7	
Jul		3.85	2.42	0.63		Jul	0.2	21 0.4	7 2.24	4	
Αμα		3 47	2 2 1	0.64	!	Αμα	01 02		1 2 04	4	

Critical months:	Wet Season	Feb	Dry Season	Oct
Max. baseflows (m³/s)	2.117		0.967	

Sep

0.1

0.2

2.1

11.5.2 Hydraulics data summary

Sep

Geomorph. Zone	5
Flood Zone	9
Max. Channel width (m)	148.4
Max. Channel Depth (m)	3.53

0.66

11.5.3 Flow - stressor response data summary

3.16

2.09

Table of initial SHIFT factors for the Stress Frequency Curves									
Category	High SHIFT	Low SHIFT							
А	1.2	0.05							
A/B	1.25	0.1							
В	1.3	0.2							
B/C	1.4	0.25							
С	1.5	0.35							
C/D	1.6	0.45							
D	1.8	0.5							
Perenniality Rules: All S	easons Perennial Forced								
Alignment of maximum s	stress to Present Day stress A	Category Aligned							
Table of flows (m ³ /s) v	stress index								

Stress	Wet Season Flow	Dry Season Flow			
0	2.242	1.043			
1	2.04	0.829			
2	1.75	0.64			
3	1.436	0.444			
4	1.097	0.319			
5	0.844	0.223			
6	0.542	0.178			
7	0.234	0.134			
8	0.156	0.089			
9	0.078	0.045			
10	0	0			

11.5.4 High flow estimation summary details

No High flows	No High flows when natural high flows are < 20% of total flows												
Maximum high	Maximum high flows are 250% greater than normal high flows												
Table of normal high flow requirements (Mill. m ³)													
Category	A	A/B	В	B/C	С	C/D	D						
Annual	22.905	21.032	19.259	17.581	15.993	14.492	13.074						
Oct	0	0	0	0	0	0	0						
Nov	2.09	1.919	1.757	1.604	1.459	1.322	1.193						
Dec	5.369	4.93	4.514	4.121	3.749	3.397	3.065						
Jan		4.739	4.339	3.961	3.603	3.265	2.946						
Feb	6.317	5.801	5.312	4.849	4.411	3.997	3.606						
Mar	3.968	3.644	3.337	3.046	2.771	2.511	2.265						
Apr	0	0	0	0	0	0	0						
May	0	0	0	0	0	0	0						
Jun	0	0	0	0	0	0	0						
Jul	0	0	0	0	0	0	0						
Aug	0	0	0	0	0	0	0						
Sep	0	0	0	0	0	0	0						

11.5.5 Final Reserve summary details

EWR Flows are NOT constrained to be below Natural or Present Day Flows										
Long term mean flow requirements (Mill. m ³ and %MAR)										
Cotogony	Low Flow	NS	Total Flows							
Category	Mill. m ³	%MAR	Mill. m ³	%MAR						
A	9.322	7.5	30.856	24.8						
A/B	8.43	6.8	28.203	22.7						
В	6.929	5.6	25.035	20.2						
B/C	6.127	4.9	22.656	18.2						
С	4.831	3.9	19.867	16						
C/D	3.701	3	17.325	14						
D	3.103	2.5	15.394	12.4						

11.5.6 Flow duration and Reserve assurance tables

Columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99	
Natural 1	Total flow d	duration cu	irve (mill. r	n ³)					-		
Oct	6.221	4.694	3.817	2.974	2.345	1.958	1.696	1.386	1.085	0.56	
Nov	9.48	6.23	4.66	3.752	3.23	2.704	1.97	1.416	1.01	0.51	
Dec	16.382	8.372	5.972	4.938	4.405	3.51	2.949	1.864	1.187	0.699	
Jan	53.803	26.258	10.935	6.664	5.345	4.28	3.594	2.802	1.798	0.904	
Feb	69.081	40.794	20.637	12.138	6.12	4.438	3.341	2.686	2.193	0.821	
Mar	40.421	23.57	13.662	7.818	5.41	4.14	3.123	2.52	2.003	1.033	
Apr	14.871	9.54	7.184	5.616	4.35	3.382	2.771	2.294	1.62	0.981	
May	8.615	6.984	5.192	4.256	3.545	2.93	2.535	2.02	1.524	0.865	
Jun	7.956	6.658	4.723	3.936	3.105	2.794	2.338	1.982	1.449	0.807	
Jul	7.806	6.364	4.797	3.836	2.785	2.624	2.257	1.888	1.444	0.777	
Aug	7.162	5.742	4.303	3.348	2.53	2.41	2.019	1.694	1.308	0.763	
Sep	6.658	4.972	4.13	2.94	2.31	2.098	1.75	1.488	1.145	0.671	
Natural Baseflow flow duration curve (mill. m ³)											
Oct	5.6	4.668	3.73	2.578	2.16	1.888	1.561	1.314	0.94	0.56	
Nov	5.814	4.66	3.603	2.975	2.439	2.169	1.682	1.264	0.916	0.51	
Dec	5.831	4.833	4.289	3.251	2.699	2.287	1.777	1.344	0.962	0.695	
Jan	9.909	7.524	5.076	3.9	3.301	2.714	2.253	1.807	1.142	0.874	
Feb	15.421	9.883	6.233	4.949	3.496	3.021	2.506	2.041	1.296	0.795	
Mar	11.976	9.01	6.618	4.991	3.705	2.99	2.571	2.199	1.384	0.932	
Apr	9.307	7.428	5.562	4.429	3.587	2.824	2.361	2.086	1.375	0.875	
May	8.2	6.219	4.993	3.79	3.151	2.581	2.278	1.94	1.378	0.798	
Jun	7.62	6.121	4.634	3.563	2.864	2.5	2.258	1.877	1.309	0.77	
Jul	7.467	5.78	4.607	3.544	2.68	2.442	2.129	1.821	1.293	0.759	
Aug	6.907	5.665	4.144	3.191	2.48	2.275	2.019	1.648	1.255	0.757	
Sep	6.451	4.881	4.011	2.912	2.31	2.09	1.701	1.45	1.095	0.671	
Category	/ Low Flow	Assuranc	e curves (mill. m³)							
A Catego	ory										
Oct	0.943	0.521	0.379	0.286	0.224	0.181	0.152	0.132	0.118	0.109	
Nov	1.115	0.863	0.703	0.354	0.269	0.212	0.164	0.15	0.15	0.15	
Dec	1.28	0.839	0.652	0.453	0.352	0.253	0.189	0.189	0.188	0.188	
Jan	2.46	1.951	1.358	0.698	0.478	0.326	0.256	0.212	0.186	0.186	
Feb	4.427	3.134	1.99	0.985	0.482	0.353	0.269	0.219	0.188	0.173	
Mar	3.345	2.488	1.663	1.037	0.506	0.375	0.286	0.244	0.244	0.244	
Apr	2.071	2.059	1.644	0.835	0.449	0.337	0.265	0.227	0.217	0.217	
May	1.658	1.481	1.257	0.658	0.44	0.304	0.255	0.224	0.208	0.207	
Jun	1.483	1.194	0.947	0.561	0.367	0.28	0.241	0.208	0.197	0.197	
Jul	1.482	1.147	0.911	0.527	0.332	0.275	0.238	0.217	0.217	0.217	
Aug	1.343	0.923	0.72	0.415	0.293	0.246	0.212	0.202	0.202	0.202	
Sep	1.141	0.693	0.546	0.372	0.25	0.204	0.168	0.167	0.166	0.166	
A/B Cate	gory										
Oct	0.831	0.489	0.353	0.264	0.205	0.165	0.137	0.118	0.104	0.095	
Nov	0.991	0.795	0.635	0.321	0.247	0.193	0.148	0.133	0.133	0.132	
Dec	1.153	0.775	0.598	0.403	0.325	0.231	0.167	0.166	0.166	0.166	
Jan	2.234	1.782	1.233	0.605	0.443	0.299	0.232	0.19	0.165	0.164	
Feb	4.106	2.834	1.777	0.815	0.448	0.324	0.245	0.196	0.168	0.153	
Mar	3.073	2.272	1.505	0.887	0.468	0.345	0.259	0.216	0.216	0.216	
Apr	1.887	1.88	1.487	0.716	0.415	0.309	0.241	0.204	0.192	0.192	

Columns	Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99	
May	1.486	1.358	1.142	0.572	0.407	0.279	0.231	0.201	0.183	0.183	
Jun	1.326	1.097	0.863	0.492	0.34	0.256	0.218	0.187	0.174	0.174	
Jul	1.323	1.055	0.832	0.464	0.306	0.251	0.216	0.192	0.192	0.191	
Aug	1.196	0.852	0.661	0.372	0.27	0.224	0.191	0.179	0.179	0.178	
Sep	1.011	0.642	0.503	0.335	0.23	0.185	0.151	0.147	0.147	0.146	
B Catego	ory										
Oct	0.659	0.432	0.31	0.231	0.178	0.142	0.117	0.1	0.088	0.08	
Nov	0.793	0.673	0.515	0.268	0.216	0.168	0.127	0.114	0.114	0.113	
Dec	0.936	0.659	0.501	0.332	0.284	0.201	0.143	0.143	0.142	0.142	
Jan	1.831	1.491	0.993	0.469	0.39	0.261	0.201	0.164	0.141	0.141	
Feb	3.439	2.361	1.391	0.556	0.394	0.284	0.214	0.17	0.145	0.131	
Mar	2.549	1.887	1.208	0.651	0.41	0.302	0.225	0.185	0.185	0.185	
Apr	1.558	1.555	1.186	0.536	0.364	0.271	0.21	0.176	0.164	0.164	
May	1.199	1.134	0.923	0.445	0.358	0.243	0.201	0.174	0.157	0.157	
Jun	1.067	0.926	0.706	0.387	0.298	0.224	0.189	0.161	0.149	0.149	
Jul	1.064	0.889	0.684	0.37	0.268	0.219	0.187	0.164	0.164	0.164	
Aug	0.958	0.728	0.552	0.307	0.236	0.195	0.166	0.153	0.153	0.153	
Sep	0.807	0.55	0.426	0.276	0.2	0.16	0.13	0.126	0.126	0.125	
B/C Cate	gory										
Oct	0.583	0.4	0.285	0.21	0.159	0.125	0.102	0.086	0.074	0.067	
Nov	0.706	0.613	0.447	0.24	0.194	0.149	0.111	0.096	0.096	0.096	
Dec	0.836	0.602	0.446	0.301	0.258	0.179	0.123	0.12	0.12	0.12	
Jan	1.636	1.345	0.86	0.41	0.355	0.234	0.178	0.142	0.119	0.119	
Feb	3.075	2.137	1.176	0.513	0.36	0.256	0.189	0.148	0.124	0.111	
Mar	2.286	1.705	1.043	0.554	0.372	0.272	0.198	0.159	0.156	0.156	
Apr	1.38	1.378	1.018	0.463	0.33	0.243	0.185	0.152	0.139	0.139	
May	1.072	1.005	0.8	0.391	0.326	0.218	0.177	0.151	0.133	0.133	
Jun	0.95	0.828	0.617	0.34	0.27	0.2	0.167	0.14	0.126	0.126	
Jul	0.947	0.798	0.601	0.327	0.242	0.195	0.165	0.14	0.139	0.139	
Aug	0.852	0.659	0.49	0.275	0.212	0.173	0.145	0.13	0.129	0.129	
Sep	0.717	0.499	0.382	0.244	0.18	0.142	0.113	0.106	0.106	0.106	
C Catego	ory										
Oct	0.503	0.343	0.242	0.177	0.133	0.103	0.082	0.068	0.058	0.052	
Nov	0.572	0.499	0.333	0.201	0.163	0.123	0.09	0.077	0.077	0.077	
Dec	0.674	0.496	0.35	0.255	0.217	0.149	0.1	0.097	0.096	0.096	
Jan	1.307	1.051	0.622	0.345	0.302	0.197	0.147	0.116	0.096	0.096	
Feb	2.434	1.644	0.783	0.44	0.307	0.216	0.158	0.122	0.101	0.09	
Mar	1.816	1.345	0.757	0.461	0.315	0.229	0.163	0.129	0.125	0.125	
Apr	1.053	1.032	0.721	0.387	0.279	0.205	0.154	0.124	0.112	0.112	
May	0.887	0.775	0.583	0.329	0.276	0.182	0.147	0.124	0.107	0.107	
Jun	0.776	0.657	0.462	0.286	0.228	0.167	0.138	0.114	0.102	0.102	
Jul	0.767	0.647	0.454	0.275	0.204	0.163	0.136	0.114	0.112	0.112	
Aug	0.693	0.537	0.381	0.232	0.178	0.144	0.119	0.104	0.104	0.104	
Sep	0.585	0.412	0.306	0.203	0.15	0.117	0.092	0.085	0.085	0.085	
C/D Cate	gory										
Oct	0.423	0.286	0.2	0.143	0.106	0.08	0.063	0.051	0.042	0.036	
Nov	0.47	0.38	0.244	0.164	0.131	0.097	0.069	0.058	0.058	0.058	
Dec	0.543	0.384	0.266	0.209	0.177	0.119	0.078	0.073	0.072	0.072	
Jan	1.036	0.75	0.423	0.285	0.249	0.159	0.117	0.091	0.073	0.072	

Columns	Columns are FDC percentage points:									
	10	20	30	40	50	60	70	80	90	99
Feb	1.872	1.13	0.521	0.367	0.254	0.176	0.127	0.096	0.078	0.069
Mar	1.419	0.963	0.534	0.383	0.257	0.186	0.129	0.099	0.095	0.095
Apr	0.836	0.706	0.479	0.321	0.228	0.166	0.123	0.096	0.084	0.084
May	0.702	0.574	0.4	0.272	0.227	0.147	0.116	0.097	0.081	0.081
Jun	0.625	0.495	0.329	0.236	0.187	0.134	0.109	0.089	0.077	0.077
Jul	0.625	0.491	0.325	0.227	0.166	0.131	0.107	0.088	0.084	0.084
Aug	0.569	0.417	0.281	0.19	0.144	0.115	0.093	0.079	0.079	0.079
Sep	0.485	0.331	0.236	0.166	0.121	0.093	0.071	0.064	0.064	0.064
D Catego	ory									
Oct	0.381	0.254	0.174	0.122	0.087	0.064	0.047	0.036	0.028	0.023
Nov	0.416	0.317	0.215	0.141	0.11	0.078	0.053	0.041	0.04	0.04
Dec	0.472	0.324	0.232	0.18	0.15	0.097	0.06	0.051	0.05	0.05
Jan	0.886	0.6	0.365	0.249	0.214	0.132	0.093	0.069	0.051	0.051
Feb	1.547	0.857	0.467	0.324	0.219	0.148	0.102	0.074	0.057	0.049
Mar	1.196	0.765	0.464	0.337	0.219	0.156	0.102	0.074	0.066	0.066
Apr	0.721	0.56	0.414	0.281	0.194	0.138	0.098	0.072	0.059	0.059
May	0.607	0.472	0.347	0.237	0.195	0.121	0.093	0.074	0.058	0.057
Jun	0.547	0.411	0.285	0.205	0.159	0.111	0.087	0.068	0.055	0.054
Jul	0.549	0.41	0.281	0.196	0.14	0.107	0.085	0.067	0.059	0.059
Aug	0.503	0.354	0.243	0.164	0.121	0.093	0.073	0.055	0.055	0.055
Sep	0.432	0.287	0.205	0.143	0.101	0.074	0.054	0.044	0.044	0.044
Category	Total Flow	v Assuran	ce curves	(mill. m³)						
A Catego	ory									
Oct	0.943	0.521	0.379	0.286	0.224	0.181	0.152	0.132	0.118	0.109
Nov	5.192	3.606	2.93	2.455	2.355	2.166	1.728	1.062	0.16	0.15
Dec	11.755	7.884	6.374	5.849	5.712	5.273	4.208	2.532	0.213	0.188
Jan	12.529	8.723	6.857	5.885	5.63	5.151	4.119	2.464	0.21	0.186
Feb	16.753	11.424	8.722	7.334	6.789	6.259	4.998	2.975	0.218	0.173
Mar	11.088	7.695	5.892	5.025	4.468	4.086	3.256	1.976	0.263	0.244
Apr	2.071	2.059	1.644	0.835	0.449	0.337	0.265	0.227	0.217	0.217
May	1.658	1.481	1.257	0.658	0.44	0.304	0.255	0.224	0.208	0.207
Jun	1.483	1.194	0.947	0.561	0.367	0.28	0.241	0.208	0.197	0.197
Jul	1.482	1.147	0.911	0.527	0.332	0.275	0.238	0.217	0.217	0.217
Aug	1.343	0.923	0.72	0.415	0.293	0.246	0.212	0.202	0.202	0.202
Sep	1.141	0.693	0.546	0.372	0.25	0.204	0.168	0.167	0.166	0.166
A/B Cate	gory									
Oct	0.831	0.489	0.353	0.264	0.205	0.165	0.137	0.118	0.104	0.095
Nov	4.735	3.313	2.68	2.249	2.163	1.988	1.584	0.971	0.142	0.132
Dec	10.771	7.245	5.852	5.357	5.247	4.841	3.857	2.318	0.189	0.166
Jan	11.48	8	6.283	5.368	5.174	4.73	3.779	2.258	0.187	0.164
Feb	15.424	10.446	7.959	6.645	6.239	5.748	4.587	2.728	0.195	0.153
Mar	10.182	7.053	5.388	4.549	4.106	3.752	2.987	1.806	0.232	0.216
Apr	1.887	1.88	1.487	0.716	0.415	0.309	0.241	0.204	0.192	0.192
May	1.486	1.358	1.142	0.572	0.407	0.279	0.231	0.201	0.183	0.183
Jun	1.326	1.097	0.863	0.492	0.34	0.256	0.218	0.187	0.174	0.174
Jul	1.323	1.055	0.832	0.464	0.306	0.251	0.216	0.192	0.192	0.191
Aug	1.196	0.852	0.661	0.372	0.27	0.224	0.191	0.179	0.179	0.178
Sep	1.011	0.642	0.503	0.335	0.23	0.185	0.151	0.147	0.147	0.146
B Catego	ory									

Columns	Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99	
Oct	0.659	0.432	0.31	0.231	0.178	0.142	0.117	0.1	0.088	0.08	
Nov	4.221	2.979	2.387	2.035	1.97	1.811	1.442	0.881	0.122	0.113	
Dec	9.744	6.583	5.312	4.869	4.792	4.422	3.523	2.113	0.163	0.142	
Jan	10.297	7.185	5.618	4.83	4.722	4.319	3.45	2.058	0.161	0.141	
Feb	13.802	9.331	7.052	5.894	5.698	5.251	4.19	2.488	0.169	0.131	
Mar	9.059	6.265	4.764	4.005	3.741	3.422	2.722	1.641	0.2	0.185	
Apr	1.558	1.555	1.186	0.536	0.364	0.271	0.21	0.176	0.164	0.164	
May	1.199	1.134	0.923	0.445	0.358	0.243	0.201	0.174	0.157	0.157	
Jun	1.067	0.926	0.706	0.387	0.298	0.224	0.189	0.161	0.149	0.149	
Jul	1.064	0.889	0.684	0.37	0.268	0.219	0.187	0.164	0.164	0.164	
Aug	0.958	0.728	0.552	0.307	0.236	0.195	0.166	0.153	0.153	0.153	
Sep	0.807	0.55	0.426	0.276	0.2	0.16	0.13	0.126	0.126	0.125	
B/C Cate	gory		I	L	I	I					
Oct	0.583	0.4	0.285	0.21	0.159	0.125	0.102	0.086	0.074	0.067	
Nov	3.836	2.718	2.157	1.853	1.796	1.649	1.311	0.796	0.103	0.096	
Dec	8.877	6.01	4.838	4.443	4.372	4.032	3.208	1.919	0.139	0.12	
Jan	9.364	6.543	5.081	4.391	4.31	3.938	3.143	1.871	0.137	0.119	
Feb	12.536	8.5	6.344	5.386	5.201	4.79	3.819	2.264	0.146	0.111	
Mar	8.229	5.702	4.289	3.615	3.413	3.119	2.478	1.488	0.17	0.156	
Apr	1.38	1.378	1.018	0.463	0.33	0.243	0.185	0.152	0.139	0.139	
May	1.072	1.005	0.8	0.391	0.326	0.218	0.177	0.151	0.133	0.133	
Jun	0.95	0.828	0.617	0.34	0.27	0.2	0.167	0.14	0.126	0.126	
Jul	0.947	0.798	0.601	0.327	0.242	0.195	0.165	0.14	0.139	0.139	
Aug	0.852	0.659	0.49	0.275	0.212	0.173	0.145	0.13	0.129	0.129	
Sep	0.717	0.499	0.382	0.244	0.18	0.142	0.113	0.106	0.106	0.106	
C Catego	ory		L	L	L	L					
Oct	0.503	0.343	0.242	0.177	0.133	0.103	0.082	0.068	0.058	0.052	
Nov	3.42	2.414	1.888	1.668	1.62	1.487	1.182	0.714	0.084	0.077	
Dec	7.989	5.415	4.345	4.023	3.96	3.654	2.907	1.733	0.114	0.096	
Jan	8.338	5.779	4.462	3.966	3.9	3.566	2.845	1.689	0.112	0.096	
Feb	11.04	7.432	5.484	4.873	4.711	4.341	3.46	2.047	0.121	0.09	
Mar	7.223	4.981	3.71	3.246	3.081	2.82	2.238	1.338	0.138	0.125	
Apr	1.053	1.032	0.721	0.387	0.279	0.205	0.154	0.124	0.112	0.112	
May	0.887	0.775	0.583	0.329	0.276	0.182	0.147	0.124	0.107	0.107	
Jun	0.776	0.657	0.462	0.286	0.228	0.167	0.138	0.114	0.102	0.102	
Jul	0.767	0.647	0.454	0.275	0.204	0.163	0.136	0.114	0.112	0.112	
Aug	0.693	0.537	0.381	0.232	0.178	0.144	0.119	0.104	0.104	0.104	
Sep	0.585	0.412	0.306	0.203	0.15	0.117	0.092	0.085	0.085	0.085	
C/D Cate	gory		I	L	I	I					
Oct	0.423	0.286	0.2	0.143	0.106	0.08	0.063	0.051	0.042	0.036	
Nov	3.05	2.115	1.653	1.493	1.452	1.334	1.059	0.635	0.064	0.058	
Dec	7.171	4.841	3.886	3.624	3.569	3.295	2.621	1.555	0.088	0.072	
Jan	7.406	5.034	3.903	3.567	3.509	3.212	2.561	1.516	0.088	0.072	
Feb	9.671	6.374	4.781	4.384	4.244	3.914	3.119	1.84	0.097	0.069	
Mar	6.318	4.258	3.209	2.907	2.764	2.534	2.009	1.195	0.106	0.095	
Apr	0.836	0.706	0.479	0.321	0.228	0.166	0.123	0.096	0.084	0.084	
May	0.702	0.574	0.4	0.272	0.227	0.147	0.116	0.097	0.081	0.081	
Jun	0.625	0.495	0.329	0.236	0.187	0.134	0.109	0.089	0.077	0.077	
Jul	0.625	0.491	0.325	0.227	0.166	0.131	0.107	0.088	0.084	0.084	

Classification & RQO: Letaba Catchment

Column	s are FDC p	percentage	points:							
	10	20	30	40	50	60	70	80	90	99
Aug	0.569	0.417	0.281	0.19	0.144	0.115	0.093	0.079	0.079	0.079
Sep	0.485	0.331	0.236	0.166	0.121	0.093	0.071	0.064	0.064	0.064
D Categ	ory									
Oct	0.381	0.254	0.174	0.122	0.087	0.064	0.047	0.036	0.028	0.023
Nov	2.743	1.883	1.486	1.34	1.301	1.194	0.946	0.562	0.046	0.04
Dec	6.451	4.345	3.498	3.26	3.21	2.962	2.354	1.388	0.065	0.05
Jan	6.633	4.465	3.504	3.21	3.155	2.886	2.298	1.354	0.064	0.051
Feb	8.583	5.588	4.309	3.948	3.819	3.519	2.801	1.647	0.074	0.049
Mar	5.615	3.738	2.878	2.613	2.481	2.273	1.798	1.062	0.077	0.066
Apr	0.721	0.56	0.414	0.281	0.194	0.138	0.098	0.072	0.059	0.059
May	0.607	0.472	0.347	0.237	0.195	0.121	0.093	0.074	0.058	0.057
Jun	0.547	0.411	0.285	0.205	0.159	0.111	0.087	0.068	0.055	0.054
Jul	0.549	0.41	0.281	0.196	0.14	0.107	0.085	0.067	0.059	0.059
Aug	0.503	0.354	0.243	0.164	0.121	0.093	0.073	0.055	0.055	0.055
Sep	0.432	0.287	0.205	0.143	0.101	0.074	0.054	0.044	0.044	0.044

11.6 EWR 7: LETABA RANCH

11.6.1 Hydrology data summary

Natural Flows:				Present Day Flows:						
Area (km²)	MAR	Ann.SD	Q75	Ann. CV	A	MAR	Ann.SD	Q75	Ann. CV	
		(m ³ * /	10 ⁶)	•	Area (km⁻)		(m ³ ;	[•] 10 ⁶)		
0.0	646.28	860.99	14.3	1.33	0	360.69	820.38	1.55	2.27	
% Zero flows	0.0				% Zero flows	0.0				
		- .	A	0.96		A C			0.96	
Baseflow Para	meters:		В	0.44	Baseflow Para	Baseflow Parameters: B				
BFI				0.41	BFI	BFI				
Hydro Index 6.2					Hydro Index	15.4				

MONTU	MEAN	SD	CV	MONTH	MEAN	SD	C۷
MONTH	(r	n ³ * 10 ⁶)		MONTH	(m ³ * 10 ⁶)		
Oct	13.66	5.47	0.4	Oct	1.74	0.93	0.54
Nov	23.15	20.56	0.89	Nov	4.6	10.47	2.28
Dec	44.75	49.49	1.11	Dec	15.01	33.77	2.25
Jan	106.99	208.31	1.95	Jan	65.21	192.46	2.95
Feb	175.28	436.73	2.49	Feb	135.27	430.29	3.18
Mar	131.47	290.94	2.21	Mar	96.27	284.8	2.96
Apr	56.75	73.42	1.29	Apr	29.39	67.41	2.29
May	27.28	12.84	0.47	May	5.5	7.07	1.29
Jun	20.25	7.22	0.36	Jun	2.57	3.06	1.19
Jul	17.64	6.19	0.35	Jul	1.99	1.49	0.75
Aug	15.43	5.44	0.35	Aug	1.6	0.16	0.1
Sep	13.64	5.13	0.38	Sep	1.53	0.21	0.14

Critical months:	Wet Season	Apr	Dry Season	Oct
Max. baseflows (m³/s)	8.938		4.753	

11.6.2 Hydraulics data summary

Geomorph. Zone	6
Flood Zone	9
Max. Channel width (m)	168.46
Max. Channel Depth (m)	11.28
Observed Channel XS used	
Observed Rating Curve used	
(Gradients and Roughness n values calibrated)	
Max. Gradient	0.01
Min. Gradient	0.001
Gradient Shape Factor	20
Max. Mannings n	0.08
n Shape Factor	20

11.6.3 Flow - stressor response data summary

Table of initial SHIFT factors for the Stress Frequency Curves									
Category	High SHIFT	Low SHIFT							
A	1.2	0.2							
A/B	1.3	0.25							
В	1.4	0.28							
B/C	1.45	0.3							
С	1.5	0.32							
C/D	1.55	0.35							
D	1.6	0.4							
Perenniality Rules: All S	easons Perennial Forced								
Alignment of maximum	stress to Present Day stress B	C Category Aligned							
Table of flows (m³/s) v	stress index								
Stress	Wet Season Flow	Dry Season Flow							
0	9.024	4.899							
1	6.799	3.29							
2	5.306	2.96							
3	4.405	2.731							
4	3.327	2.384							
5	3.078	1.986							
6	2.925	1.589							
7	2.746	1.192							
8	1.831	0.795							
9	0.915	0.397							
10	0	0							

11.6.4 High flow estimation summary details

No High flows w	No High flows when natural high flows are < 25% of total flows										
Maximum high fi	Maximum high flows are 200% greater than normal high flows										
Table of normal high flow requirements (Mill. m ³)											
Category	A	A/B	В	B/C	С	C/D	D				
Annual	76.217	71.745	67.349	63.027	58.779	54.603	50.498				
Oct	0	0	0	0	0	0	0				
Nov	4.834	4.55	4.272	3.997	3.728	3.463	1.193				
Dec	12.395 11.668 10.953 10.25 9.559 8.88 3.065										
Jan	17.987	16.932	15.894	14.874	13.872	12.886	2.946				

Classification & RQO: Letaba Catchment

Feb	19.429	18.289	17.168	16.066	14.983	13.919	3.606
Mar	14.145	13.315	12.499	11.697	10.909	10.134	2.265
Apr	7.427	6.992	6.563	6.142	5.728	5.321	0
May	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0

11.6.5 Final Reserve summary details

EWR Flows are NOT constrained to be below Natural or Present Day Flows										
Long term mean flow requirements (Mill. m ³ and %MAR)										
Cotogony	Low Flow	NS	Total I	lows						
Calegory	Mill. m ³	%MAR	Mill. m ³	%MAR						
A	59.797	9.3	133.541	20.7						
A/B	54.03	8.4	123.448	19.1						
В	50.173	7.8	115.338	17.8						
B/C	47.772	7.4	108.755	16.8						
С	45.356	7	102.228	15.8						
C/D	42.572	6.6	95.404	14.8						
D	39.201	6.1	88.061	13.6						

11.6.6 Flow duration and Reserve assurance tables

Columns are FDC percentage points:											
	10	20	30	40	50	60	70	80	90	99	
Natural Total flow duration curve (mill. m ³)											
Oct	21.53	19.234	16.476	14.542	13.175	11.33	9.817	8.614	7.337	4.843	
Nov	41.151	27.276	24.789	21.206	18.215	16.274	13.48	10.782	8.627	5.048	
Dec	85.645	60.828	48.486	39.96	30.18	24.36	19.526	16.572	11.251	6.579	
Jan	211.829	145.388	95.963	55.84	45.655	33.89	28.517	24.004	18.489	9.222	
Feb	380.368	233.618	132.566	75.232	53.26	39.592	29.116	23.526	19.992	10.223	
Mar	304.973	174.61	117.296	62.88	47.085	34.53	25.96	21.332	17.56	11.358	
Apr	113.078	70.428	59.121	45.994	36.515	26.286	22.091	19.792	16.073	10.87	
May	45.214	36.174	33.48	29.362	24.24	21.652	18.93	16.772	13.347	8.698	
Jun	28.141	26.148	24.75	22.936	19.695	17.406	15.796	14.2	10.94	7.256	
Jul	25.201	23.238	21.419	18.466	16.935	15.188	13.68	12.346	10.086	6.396	
Aug	22.381	20.61	18.203	16.744	15.3	13.236	12.01	10.606	9.038	5.607	
Sep	21.735	17.756	16.343	14.596	13.815	11.752	9.935	8.942	7.86	4.904	
Natural I	Baseflow fl	ow duratio	on curve (m	nill. m³)							
Oct	19.208	16.791	14.8	13.94	12.639	10.627	9.27	8.512	7.076	4.843	
Nov	19.936	18.185	16.023	14.914	12.913	11.555	10.454	8.909	7.406	4.871	
Dec	24.46	22.464	19.046	17.337	15.854	13.964	12.486	11.101	8.897	5.739	
Jan	43.441	33.878	28.291	22.376	19.745	16.818	15.023	13.319	10.594	6.624	
Feb	78.307	48.729	33.388	26.637	21.423	18.578	16.999	14.992	11.327	7.417	
Mar	72.852	49.251	38.047	28.571	22.896	19.517	17.484	15.645	11.947	8.833	
Apr	54.155	39.51	32.295	26.603	23.033	19.813	17.381	14.393	11.434	9.215	
May	35.689	32.716	27.059	23.972	20.308	18.417	16.905	13.814	11.287	8.682	
Jun	28.141	25.99	23.54	20.854	18.763	16.514	15.352	13.385	10.834	7.256	
Jul	25.201	23.222	21.03	18.426	16.805	15.05	13.394	11.855	9.859	6.396	
Aug	22.192	20.569	18.203	16.256	15.08	13.024	11.727	10.558	9.038	5.607	
Sep	19.873	17.728	15.999	14.354	13.595	11.274	9.839	8.942	7.86	4.904	

Columns	are FDC p	percentage	points:							
	10	20	30	40	50	60	70	80	90	99
Category	Low Flow	Assuranc	e curves (mill. m³)						
A Catego	ory									
Oct	3.866	2.956	2.576	2.382	2.271	2.203	2.16	2.131	2.111	2.098
Nov	4.174	3.207	2.846	2.583	2.484	2.479	2.407	2.225	2.141	2.046
Dec	5.523	4.439	3.85	3.601	3.595	3.439	3.089	2.801	2.585	2.463
Jan	10.486	8.563	6.833	5.679	5.414	4.636	3.858	3.393	3.114	2.703
Feb	16.94	10.198	7.207	6.621	5.803	4.772	3.999	3.37	3.005	2.99
Mar	16.947	11.294	8.55	7.177	7.112	5.58	4.427	3.939	3.463	3.375
Apr	12.854	10.947	8.417	7.742	7.239	5.696	4.374	3.624	3.245	3.084
May	8.164	7.956	6.614	6.508	5.933	5.256	4.379	3.547	3.29	3.1
Jun	6.102	5.426	5.064	4.925	4.754	4.233	3.772	3.27	2.997	2.854
Jul	5.503	4.725	4.399	4.039	4.021	3.683	3.311	3.047	2.919	2.753
Aug	4.76	3.938	3.54	3.236	3.219	3.051	2.846	2.702	2.655	2.466
Sep	4.193	3.107	2.826	2.592	2.591	2.427	2.254	2.239	2.204	2.144
A/B Cate	gory	I			I		L		I	
Oct	3.546	2.678	2.316	2.13	2.024	1.96	1.918	1.89	1.871	1.859
Nov	3.832	2.904	2.578	2.335	2.204	2.189	2.12	1.949	1.88	1.812
Dec	5.063	4.004	3.544	3.339	3.244	3.026	2.678	2.401	2.207	2.117
Jan	9.562	7.658	6.483	5.442	5.073	4.052	3.288	2.815	2.54	2.271
Feb	15.492	9.152	6.798	6.428	5.488	4.157	3.372	2.806	2.48	2.477
Mar	15.495	10.134	8.005	6.85	6.762	4.876	3.802	3.343	2.887	2.799
Apr	11.716	9.657	8.144	7.59	6.921	4.948	3.671	2.945	2.578	2.423
May	7.459	7.116	6.279	6.276	5.583	4.579	3.693	2.918	2.638	2.477
Jun	5.588	4.88	4.743	4.679	4.433	3.702	3.212	2.716	2.447	2.322
Jul	5.044	4.26	4.082	3.776	3.646	3.235	2.854	2.574	2.422	2.29
Aug	4.367	3.558	3.243	2.971	2.91	2.692	2.482	2.318	2.254	2.116
Sep	3.849	2.814	2.558	2.319	2.319	2.153	1.993	1.956	1.922	1.869
B Catego	ory	I	1	1	I		I		I	
Oct	3.286	2.43	2.072	1.889	1.785	1.721	1.68	1.653	1.634	1.622
Nov	3.561	2.645	2.335	2.1	1.954	1.938	1.87	1.707	1.644	1.581
Dec	4.712	3.67	3.286	3.1	2.957	2.726	2.387	2.12	1.936	1.85
Jan	8.946	7.119	6.271	5.249	4.777	3.711	2.966	2.507	2.242	1.989
Feb	14.471	8.46	6.572	6.293	5.223	3.832	3.067	2.498	2.173	2.17
Mar	14.47	9.364	7.606	6.57	6.461	4.485	3.412	2.959	2.539	2.452
Apr	10.965	8.905	7.995	7.498	6.506	4.586	3.343	2.637	2.281	2.13
May	6.961	6.638	6.112	6.106	5.291	4.22	3.358	2.606	2.332	2.176
Jun	5.204	4.54	4.505	4.471	4.151	3.38	2.9	2.419	2.158	2.036
Jul	4.693	3.915	3.826	3.542	3.363	2.926	2.553	2.281	2.132	2.005
Aug	4.059	3.255	2.986	2.729	2.638	2.41	2.202	2.043	1.979	1.85
Sep	3.577	2.562	2.316	2.081	2.067	1.906	1.751	1.713	1.682	1.632
B/C Cate	gory									
Oct	3.142	2.298	1.946	1.766	1.663	1.601	1.56	1.533	1.515	1.503
Nov	3.407	2.507	2.209	1.978	1.823	1.805	1.735	1.577	1.519	1.464
Dec	4.504	3.492	3.149	2.972	2.793	2.548	2.21	1.95	1.774	1.696
Jan	8.522	6.822	6.151	5.134	4.557	3.478	2.743	2.285	2.022	1.809
Feb	13.809	8.079	6.488	6.201	5.002	3.595	2.832	2.278	1.965	1.964
Mar	13.806	8.943	7.388	6.346	6.196	4.21	3.157	2.713	2.307	2.221
Apr	10.422	8.57	7.92	7.43	6.197	4.307	3.084	2.389	2.038	1.889
May	6.643	6.45	5.996	5.991	5.06	3.96	3.101	2.369	2.091	1.945

Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99
Jun	4.972	4.403	4.375	4.344	3.952	3.166	2.68	2.205	1.948	1.831
Jul	4.486	3.755	3.689	3.416	3.185	2.737	2.363	2.089	1.935	1.817
Aug	3.882	3.093	2.851	2.601	2.485	2.249	2.041	1.88	1.809	1.695
Sep	3.422	2.428	2.19	1.956	1.933	1.776	1.626	1.581	1.551	1.504
C Catego	ory									
Oct	2.997	2.167	1.821	1.643	1.542	1.48	1.44	1.414	1.396	1.384
Nov	3.253	2.372	2.083	1.857	1.691	1.672	1.601	1.447	1.395	1.348
Dec	4.297	3.328	3.014	2.842	2.621	2.369	2.034	1.779	1.611	1.543
Jan	8.1	6.602	6.035	5.014	4.317	3.246	2.519	2.062	1.803	1.63
Feb	13.15	7.762	6.415	6.103	4.754	3.359	2.597	2.059	1.758	1.758
Mar	13.146	8.591	7.175	6.067	5.896	3.935	2.902	2.467	2.074	1.989
Apr	9.879	8.452	7.854	7.362	5.888	4.028	2.824	2.141	1.795	1.649
May	6.343	6.311	5.87	5.865	4.803	3.7	2.844	2.132	1.85	1.713
Jun	4.742	4.272	4.25	4.211	3.738	2.951	2.461	1.991	1.737	1.625
Jul	4.28	3.61	3.555	3.286	2.999	2.547	2.172	1.896	1.737	1.63
Aug	3.705	2.94	2.716	2.472	2.327	2.089	1.88	1.718	1.64	1.541
Sep	3.267	2.295	2.064	1.83	1.8	1.645	1.5	1.449	1.42	1.376
C/D Cate	gory									
Oct	2.822	2.02	1.686	1.515	1.417	1.357	1.319	1.293	1.276	1.265
Nov	3.064	2.223	1.947	1.729	1.554	1.534	1.462	1.317	1.269	1.231
Dec	4.035	3.153	2.867	2.699	2.43	2.177	1.85	1.604	1.446	1.388
Jan	7.519	6.414	5.902	4.867	4.026	2.987	2.28	1.832	1.58	1.45
Feb	12.265	7.455	6.301	5.969	4.443	3.092	2.344	1.832	1.552	1.551
Mar	12.263	8.25	6.937	5.705	5.515	3.625	2.632	2.215	1.839	1.755
Apr	9.072	8.281	7.763	7.272	5.508	3.709	2.544	1.882	1.548	1.407
May	6.18	6.152	5.701	5.693	4.485	3.406	2.567	1.887	1.605	1.48
Jun	4.447	4.126	4.112	4.05	3.482	2.714	2.227	1.77	1.522	1.423
Jul	4.021	3.449	3.407	3.141	2.785	2.341	1.972	1.698	1.537	1.441
Aug	3.487	2.773	2.571	2.332	2.153	1.918	1.712	1.552	1.468	1.386
Sep	3.076	2.148	1.929	1.695	1.659	1.51	1.372	1.317	1.288	1.247
D Catego	ory									
Oct	2.588	1.844	1.534	1.375	1.285	1.229	1.194	1.17	1.154	1.144
Nov	2.811	2.042	1.793	1.586	1.404	1.386	1.317	1.183	1.141	1.112
Dec	3.706	2.939	2.695	2.521	2.201	1.958	1.65	1.42	1.278	1.232
Jan	6.912	6.16	5.727	4.649	3.647	2.674	2.011	1.586	1.349	1.266
Feb	11.276	7.071	6.123	5.744	4.024	2.763	2.054	1.59	1.344	1.34
Mar	11.28	7.824	6.645	5.277	4.997	3.245	2.333	1.948	1.597	1.518
Apr	8.419	8.005	7.619	7.119	4.987	3.309	2.222	1.605	1.293	1.161
May	5.976	5.938	5.493	5.394	4.062	3.043	2.249	1.623	1.351	1.243
Jun	4.093	3.946	3.938	3.788	3.154	2.432	1.963	1.534	1.301	1.224
Jul	3.698	3.264	3.231	2.954	2.523	2.103	1.753	1.49	1.33	1.256
Aug	3.203	2.57	2.402	2.166	1.951	1.728	1.532	1.378	1.292	1.228
Sep	2.823	1.97	1.774	1.54	1.504	1.365	1.238	1.183	1.154	1.116
Category	Total Flow	w Assuran	ce curves	(mill. m ³)						
A Catego	ory									
Oct	3.866	2.956	2.576	2.382	2.271	2.203	2.16	2.131	2.111	2.098
Nov	13.087	10.736	9.183	7.977	7.324	6.998	6.026	4.335	2.164	2.046
Dec	28.378	23.744	20.099	17.433	16.007	15.028	12.367	8.21	2.642	2.463
Jan	43.652	36.577	30.413	25.752	23.426	21.455	17.322	11.242	3.198	2.703

Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99
Feb	52.764	40.457	32.677	28.302	25.26	22.938	18.542	11.849	3.095	2.99
Mar	43.029	33.324	27.093	22.962	21.277	18.806	15.015	10.112	3.529	3.375
Apr	26.549	22.515	18.154	16.031	14.677	12.64	9.934	6.865	3.279	3.084
May	8.164	7.956	6.614	6.508	5.933	5.256	4.379	3.547	3.29	3.1
Jun	6.102	5.426	5.064	4.925	4.754	4.233	3.772	3.27	2.997	2.854
Jul	5.503	4.725	4.399	4.039	4.021	3.683	3.311	3.047	2.919	2.753
Aug	4.76	3.938	3.54	3.236	3.219	3.051	2.846	2.702	2.655	2.466
Sep	4.193	3.107	2.826	2.592	2.591	2.427	2.254	2.239	2.204	2.144
A/B Cate	gory		I	L	L					
Oct	3.546	2.678	2.316	2.13	2.024	1.96	1.918	1.89	1.871	1.859
Nov	12.223	9.991	8.544	7.413	6.761	6.444	5.526	3.935	1.901	1.812
Dec	26.577	22.176	18.84	16.36	14.928	13.935	11.412	7.493	2.261	2.117
Jan	40.782	34.029	28.68	24.337	22.029	19.884	15.962	10.204	2.618	2.271
Feb	49.215	37.637	30.774	26.838	23.803	21.257	17.062	10.787	2.564	2.477
Mar	40.047	30.872	25.46	21.709	20.096	17.325	13.769	9.154	2.949	2.799
Apr	24.608	20.546	17.31	15.393	13.923	11.486	8.904	5.996	2.611	2.423
May	7.459	7.116	6.279	6.276	5.583	4.579	3.693	2.918	2.638	2.477
Jun	5.588	4.88	4.743	4.679	4.433	3.702	3.212	2.716	2.447	2.322
Jul	5.044	4.26	4.082	3.776	3.646	3.235	2.854	2.574	2.422	2.29
Aug	4.367	3.558	3.243	2.971	2.91	2.692	2.482	2.318	2.254	2.116
Sep	3.849	2.814	2.558	2.319	2.319	2.153	1.993	1.956	1.922	1.869
B Catego	ory		I	I	I					
Oct	3.286	2.43	2.072	1.889	1.785	1.721	1.68	1.653	1.634	1.622
Nov	11.437	9.297	7.935	6.867	6.231	5.932	5.067	3.571	1.664	1.581
Dec	24.908	20.729	17.645	15.323	13.926	12.968	10.585	6.9	1.987	1.85
Jan	38.254	31.874	27.108	22.986	20.694	18.572	14.864	9.444	2.315	1.989
Feb	46.128	35.199	29.079	25.452	22.416	19.884	15.918	9.99	2.253	2.17
Mar	37.517	28.832	23.992	20.519	18.978	16.172	12.768	8.414	2.597	2.452
Apr	23.067	19.127	16.599	14.822	13.078	10.723	8.256	5.502	2.311	2.13
May	6.961	6.638	6.112	6.106	5.291	4.22	3.358	2.606	2.332	2.176
Jun	5.204	4.54	4.505	4.471	4.151	3.38	2.9	2.419	2.158	2.036
Jul	4.693	3.915	3.826	3.542	3.363	2.926	2.553	2.281	2.132	2.005
Aug	4.059	3.255	2.986	2.729	2.638	2.41	2.202	2.043	1.979	1.85
Sep	3.577	2.562	2.316	2.081	2.067	1.906	1.751	1.713	1.682	1.632
B/C Cate	gory									
Oct	3.142	2.298	1.946	1.766	1.663	1.601	1.56	1.533	1.515	1.503
Nov	10.778	8.733	7.45	6.44	5.826	5.542	4.727	3.321	1.538	1.464
Dec	23.404	19.456	16.587	14.411	13.057	12.132	9.883	6.423	1.821	1.696
Jan	35.948	29.988	25.65	21.733	19.453	17.386	13.877	8.776	2.091	1.809
Feb	43.434	33.103	27.551	24.131	21.091	18.618	14.859	9.29	2.04	1.964
Mar	35.375	27.161	22.722	19.399	17.91	15.147	11.913	7.818	2.361	2.221
Apr	21.747	18.136	15.972	14.284	12.347	10.05	7.682	5.069	2.066	1.889
May	6.643	6.45	5.996	5.991	5.06	3.96	3.101	2.369	2.091	1.945
Jun	4.972	4.403	4.375	4.344	3.952	3.166	2.68	2.205	1.948	1.831
Jul	4.486	3.755	3.689	3.416	3.185	2.737	2.363	2.089	1.935	1.817
Aug	3.882	3.093	2.851	2.601	2.485	2.249	2.041	1.88	1.809	1.695
Sep	3.422	2.428	2.19	1.956	1.933	1.776	1.626	1.581	1.551	1.504
C Catego	ory		1	1	1					
Oct	2.997	2.167	1.821	1.643	1.542	1.48	1.44	1.414	1.396	1.384

Columns are FDC percentage points:										
	10	20	30	40	50	60	70	80	90	99
Nov	10.127	8.178	6.97	6.017	5.425	5.158	4.391	3.074	1.412	1.348
Dec	21.923	18.216	15.546	13.51	12.194	11.307	9.19	5.95	1.655	1.543
Jan	33.678	28.207	24.221	20.494	18.209	16.217	12.902	8.116	1.867	1.63
Feb	40.777	31.098	26.058	22.824	19.758	17.369	13.813	8.598	1.828	1.758
Mar	33.261	25.581	21.476	18.241	16.82	14.135	11.068	7.228	2.125	1.989
Apr	20.44	17.374	15.363	13.754	11.624	9.384	7.112	4.64	1.822	1.649
May	6.343	6.311	5.87	5.865	4.803	3.7	2.844	2.132	1.85	1.713
Jun	4.742	4.272	4.25	4.211	3.738	2.951	2.461	1.991	1.737	1.625
Jul	4.28	3.61	3.555	3.286	2.999	2.547	2.172	1.896	1.737	1.63
Aug	3.705	2.94	2.716	2.472	2.327	2.089	1.88	1.718	1.64	1.541
Sep	3.267	2.295	2.064	1.83	1.8	1.645	1.5	1.449	1.42	1.376
C/D Cate	gory									
Oct	2.822	2.02	1.686	1.515	1.417	1.357	1.319	1.293	1.276	1.265
Nov	9.449	7.617	6.488	5.594	5.022	4.772	4.055	2.828	1.285	1.231
Dec	20.409	16.984	14.508	12.608	11.322	10.48	8.497	5.479	1.488	1.388
Jan	31.279	26.484	22.796	19.247	16.931	15.036	11.926	7.455	1.639	1.45
Feb	37.93	29.133	24.548	21.502	18.381	16.107	12.763	7.906	1.616	1.551
Mar	30.948	24.033	20.222	17.014	15.663	13.1	10.218	6.637	1.886	1.755
Apr	18.883	16.568	14.738	13.21	10.837	8.684	6.527	4.205	1.573	1.407
May	6.18	6.152	5.701	5.693	4.485	3.406	2.567	1.887	1.605	1.48
Jun	4.447	4.126	4.112	4.05	3.482	2.714	2.227	1.77	1.522	1.423
Jul	4.021	3.449	3.407	3.141	2.785	2.341	1.972	1.698	1.537	1.441
Aug	3.487	2.773	2.571	2.332	2.153	1.918	1.712	1.552	1.468	1.386
Sep	3.076	2.148	1.929	1.695	1.659	1.51	1.372	1.317	1.288	1.247
D Catego	ory									
Oct	2.588	1.844	1.534	1.375	1.285	1.229	1.194	1.17	1.154	1.144
Nov	8.716	7.03	5.992	5.16	4.612	4.381	3.714	2.581	1.156	1.112
Dec	18.849	15.73	13.461	11.686	10.425	9.637	7.797	5.004	1.316	1.232
Jan	28.886	24.721	21.35	17.948	15.581	13.817	10.932	6.787	1.404	1.266
Feb	35.011	27.12	22.998	20.109	16.915	14.799	11.69	7.208	1.404	1.34
Mar	28.561	22.42	18.931	15.735	14.382	12.007	9.349	6.038	1.64	1.518
Apr	17.493	15.669	14.071	12.611	9.915	7.91	5.906	3.752	1.316	1.161
May	5.976	5.938	5.493	5.394	4.062	3.043	2.249	1.623	1.351	1.243
Jun	4.093	3.946	3.938	3.788	3.154	2.432	1.963	1.534	1.301	1.224
Jul	3.698	3.264	3.231	2.954	2.523	2.103	1.753	1.49	1.33	1.256
Aug	3.203	2.57	2.402	2.166	1.951	1.728	1.532	1.378	1.292	1.228
Sep	2.823	1.97	1.774	1.54	1.504	1.365	1.238	1.183	1.154	1.116